Designing honeycomb shells for rocket fuel tanks accounting for plastic deformations
Authors: Pechnikov V.P., Zakharov R.V., Tarasova A.V.
Published in issue: #11(71)/2017
DOI: 10.18698/2308-6033-2017-11-1703
Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft
We suggest a method and a program for designing a honeycomb type rocket tank in the case of the shell losing its stability under plastic deformations. The computations involve designing the fuel tank, accounting for general and local stability losses for the shell on the whole and a specific cell at once. We assume that the minimum mass of the tank shell corresponds to the moment when general and local critical forces in the shell are equal to the assumed analytically determined failure load. We provide computation examples and a look at the user-friendly software interface. Stiffened shell design that takes the plasticity zone into account makes it possible to noticeably widen the range of loads affecting the fuel tank and to use the capabilities of its material more fully.
References
[1] Lizin V.T., Pyatkin V.A. Proektirovanie tonkostennykh konstruktsiy [Thin-walled structure design]. Moscow, Mashinostroenie Publ., 2003, 446 p.
[2] Grigolyuk E.I., Kabanov V.I. Ustoychivost obolochek [Stability of shells]. Moscow, Nauka Publ., 1978, 359 p.
[3] Tarasova A.V., Zakharov R.V. Razrabotka programmnogo obespecheniya dlya podbora optimalnoy massy vafelnoy konstruktsii i napryazheniy, deystvuyushchikh v ney, s vozmozhnostyu vybora formy kletki [Developing software for selecting optimum honeycomb structure mass and its internal stresses, featuring a variable cell shape]. XL Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh pionerov osvoeniya kosmicheskogo prostranstva: sbornik tezisov [Proc. of the 40th Academic Readings on Cosmonautics devoted to the memory of S.P. Korolev, Academician, and other distinguished Russian scientists, space exploration pioneers]. Moscow, January 26-29, 2016. Moscow, BMSTU Publ., p. 320.
[4] Korolev V.I. Uprugoplasticheskie deformatsii obolochek [Elastoplastic deformations of shells]. Moscow, Mashinostroenie Publ., 1971, 304 p
[5] Almroth B.O., Brush D.O. Journal of the Aerospace Sciences, 1961, vol. 28, no. 7, pp. 573-578.
[6] Balabukh L.I., Alfutov N.A., Usyukin V.I. Stroitelnaya mekhanika raket [Structural mechanics of rockets]. Moscow, Vysshaya Shkola Publ., 1984, 391 p.
[7] Hertel H. Leichtbau: Bauelemente, Bemessungen und Konstruktionen von Flugzeugen und anderen Leichtbauwerken [Lightweight design: Components, parameter calculation and design of aircraft and other light structures]. Berlin, Springer-Verlag, 1960. [In Russ.: Hertel H. Tonkostennye konstruktsii [Thin-walled structures]. Moscow, Mashinostroenie Publ., 1965, 528 p.].
[8] Volmir A.S. Ustoychivost uprugikh sistem [Stability of elastic systems]. Moscow, State Publishing House of Physical and Mathematical Literature, 1963, 880 p.
[9] Avdovin A.S. Prikladnye metody rascheta obolochek i tonkostennykh konstruktsiy [Applied techniques for computing parameters of shells and thin-walled structures]. Moscow, Mashinostroenie Publ., 1969, 402 p.
[10] Alfutov N.A. Osnovy rascheta na ustoychivost uprugikh sistem [Foundations of stability computations for elastic systems]. Moscow, Mashinostroenie Publ., 1978, 311 p.