Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Buckling of cylindrical shells in rigid medium

Published: 14.07.2017

Authors: Egorov A.V.

Published in issue: #9(69)/2017

DOI: 10.18698/2308-6033-2017-9-1670

Category: Aviation and Rocket-Space Engineering | Chapter: Design, construction and production of aircraft

The local buckling of metal liners is a crucial practical task when manufacturing and exploiting metal-composite pressure vessels. This paper considers deformation of a thin-walled cylindrical shell (liner) rigidly confined by cylindrical cage under external pressure loading. The primary focus is on accounting initial imperfections in terms of technological deviations: local notches and ridges on the liner and container, which, in their turn, have regular geometry. The present investigation is numerical and employs a three-dimensional model, where the liner and the container are simulated with volumetric finite elements. Besides, this model allows taking into account the girth welds in the liner. The study analyses the mechanical behavior of the liner according to the elastic and elasticplastic patterns. We consider two types of loading of the liner: heating the liner in the cold cage and pressure moulding of the liner by the cooled container without any thermal contact. The numerical results have shown the essential dependence of the maximum critical pressure on the liner on the value of the technological deviations.

[1] Grigolyuk E.I., Kabanov V.V. Ustoychivost obolochek [The shell stability]. Moscow, Nauka Publ., 1978, 360 p.
[2] Feodosev V.I. Izbrannye zadachi i voprosy po soprotivleniyu materialov [The selected tasks and questions regarding the strength of materials]. Moscow, Nauka Publ., 1973, 400 p.
[3] Glock D. Der Stahlbau, 1977, vol. 46, no. 7, pp. 212-217.
[4] Brush D.O., Almroth B.O. Buckling of Bars, Plates, and Shells. New York, McGraw-Hill, 1975.
[5] El-Sawy K., Moore I.D. Journal of Structural Engineering, 1998, no. 124 (11), pp. 1350-1357.
[6] Montel R. La Houille Blanche, 1960, no. 15 (5), pp. 560-568.
[7] Vasilikis D., Karamanos S.A. Applied Mechanics Reviews, 2014, vol. 66, Article Number 010801.
[8] El-Sawy K. Tunnelling and Underground Space Technology, 2013, no. 33, pp. 98-110. DOI 10.1016/j.tust.2012.09.004
[9] Estrada C.F., Godoy L.A., Flores F.G. Thin-walled structures, 2012, no. 61, pp. 188-195. Available at: (accessed April 28, 2017).
[10] Vasilikis D., Karamanos S.A. Journal of Pressure Vessel Technology, 2010, vol. 133, no. 1, pp. 331-341.
[11] El-Sawy K. Journal of Structural Engineering, 2002, 128(7), pp. 934–941.
[12] Vasiliev V.V. Composite pressure vessels - analysis, design and manufacturing. Blacksburg, Bull Ridge Publ., 2009, 704 p.
[13] Vasilev V.V., Moroz N.G. Kompozitnye ballony davleniya. Proektirovanie, raschet, izgotovlenie i ispytaniya: spravochnoe posobie [Composite pressure cylinders. Designing, calculating, manufacturing and testing: a reference book]. Moscow, Mashinostroenie: Innovatsionnoe mashinostroenie Publ., 2015, 373 p.
[14] Egorov A.V. Aviatsionnaya promyshlennost - Aviation Industry, 2016, no. 1, pp. 38-41.
[15] Raschetnye znacheniya kharakteristik aviatsionnykh metallicheskikh konstruktsionnykh materialov: spravochnik [Calculated values of aviation metallic constructional materials characteristics: a reference book]. Moscow, PJSC UAC Publ., 2009, 268 p.