Improved estimation of aerodynamic characteristics of a complex geometry nanosatellite
Authors: Barinova E.V., Boltov E.A., Elisov N.A., Lomaka I.A.
Published in issue: #10(118)/2021
DOI: 10.18698/2308-6033-2021-10-2116
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts
The paper presents an approach to refine the aerodynamic characteristics (drag coefficient, aerodynamic torque) of a complex-geometry nanosatellite. The approach is based on the direct simulation Monte-Carlo method. The calculations took into account gas−surface interaction according to Cercignani—Lampis—Lord model, chemical composition of atmosphere on the orbit altitude and particle thermal velocity. The nanosatellite complex geometry was described as a finite-element grid with the cell size of 5 mm. The results of the engineering and numerical methods were compared. The differences in drag coefficient and aerodynamic torque between the two methods reached 20%.
References
[1] Duann Y., Chang L.C., Chao C.-K., Chiu Y.-C., Tsai-Lin R., Tai T.-Y., Luo W.-H., Liao C.-T., Liu H.-T., Chung C.-J., Duann R., Kuo C.-L., Liu J.-Y., Yang Z.-M., Gacal G.F., Chandran A., Priyardarshan H., Verma A., Fang T.-W., Srivastava S. Advances in Space Research, 2020, vol. 66 (1), pp. 116−134.
[2] Baddock M.C., Bryant R.G., Acosta M.D., Gill T.E. Journal of Arid Environments, 2021, vol. 184. Available at: https://www.sciencedirect.com/science/article/pii/S0140196320302342 (accessed April 12, 2021). https://doi.org/10.1016/j.jaridenv.2020.104335
[3] Cannistra A.F., Shean D.E., Cristea N.C. Remote Sensing of Environment, 2021, vol. 258. Available at: https://www.sciencedirect.com/science/article/pii/S0034425721001176 (accessed April 20, 2021). https://doi.org/10.1016/j.rse.2021.112399
[4] Miyazaki Y. Proceedings of the IEEE, 2018, vol. 106 (3), pp. 471−483.
[5] Santoni F., Piergentili F., Donati S., Perelli M., Negri A., Marino M. Acta Astronautica, 2014, vol. 95, pp. 210−217.
[6] Fanchini G., Gagliostro D. Acta Astronautica, 2011, vol. 69 (11-12), pp. 1089−1095.
[7] Belokonov I.V., Timbai I.A., Nikolaev P.N. Giroskopiya i Navigatsiya — Gyroscopy and Navigation, 2018, vol. 26 (3), pp. 69–91.
[8] Belokonov I.V., Kramlikh A.V., Timbai I.A. Advances in the Astronautical Sciences, 2015, vol. 153, pp. 383–397.
[9] Shen C. Rarefied gas dynamics. Fundamentals, simulations and micro flows, Berlin, Springer-Verlag, 2005, 421 p.
[10] Alekseeva E.V., Barancev R.G. Lokalnyi metod aerodinamicheskogo rascheta v razrezhennom gaze [Local method of aerodynamic calculation in rarefied gas]. Leningrad, LGU Publ., 1976, 210 p.
[11] Bird G.A. Physics of Fluids, 1963, vol. 6 (10), pp. 1518−1519.
[12] Bird G.A. Application of the Direct Simulation Monte Carlo Method to the Full Shuttle Geometry. 5th Joint Thermophysics and Heat Transfer Conference. Seattle, 18−20 June 1990. Seattle, AIAA, 1990, 7 p.
[13] Maxwell J.C. The Royal Society, 1878, vol. 27, pp. 304−308.
[14] Nocilla S. The Surface Re-emission Law in Free Molecular Flow. Proc. 3rd Int. Symp. on Rarefied Gas Dynamics. New York, Academic Press, 1963, vol. 1, pp. 327−346.
[15] Cercignani C., Lampis M. Transport Theory and Statistical Physics, 1971, vol. 1 (2), pp. 101−114.
[16] Lord R.G. Physics of Fluids, 1991, vol. 3, pp. 1427−1433.
[17] Lord R.G. Physics of Fluids, 1995, vol. 7, pp. 1159−1161.
[18] Lord R.G. Application of the Cercignani-Lampis Scattering Kernel to Direct Simulation Monte Carlo Calculations. Proc. 17th Int. Symp. On Rarefied Gas Dynamics. Rheinisch-Westfaelische Technische Hochschule Aachen. Aachen, Wiley-VCH Publisher, 1995, pp. 1427−1433.
[19] Padilla J.F., Boyd I.D. Assessment of Gas-Surface Interaction Models in DSMC Analysis of Rarefied Hypersonic flow. 39th AIAA Thermophysics Conference. Miami, 25−28 June 2007. Miami, AIAA, 2007, 15 p.
[20] Padilla J.F., Boyd I.D. Journal of Thermophysics and Heat Transfer, 2009, vol. 23 (1), pp. 96−105.
[21] Walker A., Mehta P., Koller J. Journal of Spacecraft and Rockets, 2014, vol. 51 (5), 20 p.
[22] Mehta P.M., McLaughlin C.A. Advances in Space Research, 2013, vol. 52, pp. 2035−2051.
[23] Gorji M.H., Jenny P. Physics of Fluids, 2014, vol. 26, 16 p.
[24] Beletskiy V.V. Dvizhenie iskusstvennogo sputnika ontositelno tsentra mass [The movement of an artificial satellite relative to the center of mass]. Moscow, Nauka Publ., 1965, 416 p.
[25] Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, University Press, 1994, 479 p.