High-temperature effect of a gas jet of reactants on the front plate
Authors: Mosolov S.V., Partola I.S., Kudinov A.S., Yurchenko I.I., Klimenko A.G., Fedorov S. A.
Published in issue: #1(109)/2021
DOI: 10.18698/2308-6033-2021-1-2047
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts
The paper introduces the results of measuring and predicting the heat and force effect of jets of high-temperature reacting mixtures on the oxygen-methane, oxygen-alcohol components when acting on the front plate in the near field of the jet. A high-temperature supersonic gas jet flows out of a model chamber with a Laval nozzle into a medium with atmospheric pressure at a degree of off-design ratio of about unity. In the chamber, ignition and stable combustion of a mixture of selected substances occur, the ratio of these substances providing a stagnation temperature in the range of 1900 ... 3400 K. The pressure distribution function on the front plate obtained in the experiment is used. The proposed model of the high-temperature flow effect on the frontal surface can be used to test software systems and determine the levels of thermal effect during sample tests.
References
[1] Gubanova O.I., Lunev V.V., Plastinina L.I. Mekhanika zhidkosti i gaza — Fluid Dynamics, 1971, no. 2, pp. 135–138.
[2] Lamont P.J., Hunt B.L. The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J. Fluid Mech., 1980, vol. 100, part 3, pp. 471–611.
[3] Zapryagaev V.I., Kudryavtsev A.N., Lokotko A.V., Solotchin A.V., Pavlov A.A., Hadjadj A. An experimental and numerical study of a supersonic jet shock-wave structure. In: West East high speed flow fields. Aerospace applications from high subsonic to hypersonic regime. Zeitoun D.E., Periaux J., Desideri J.A., Marini M., eds. Publication of CIMNE, Barcelona, Spain, 2003, pp. 244–305.
[4] Isaev S.A., Lipnitskiy Yu.M., Baranov P.A., Panasenko A.V., Usachov A.E. Inzhenerno-fizicheskii zhurnal — Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 6, pp. 1253–1267.
[5] Zapriagaev V.I., Kavun I.N., Kiselev N.P. Prikladnaya mekhanika i tekhnicheskaya fizika — Journal of Applied Mechanics and Technical Physics, 2010, vol. 51, no. 2, pp.71–80.
[6] Love J.G., Stuerman M.T., Messersmith N.L., Ehresman C.M., Murthy S.N.B. Experimental Investigations of the Heat Transfer Characteristics of Impinging Jets. AIAA Paper 93–5018.
[7] Spesivtsev V.V. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya (Aerospace engineering and technology), 2015, no. 4 (121), pp. 60–64.
[8] Kudin O.K., Nesterov Yu.N. Uchenye zapiski TsAGI — TsAGI Science Journal, 2016, vol. XLVII, no. 3, pp. 47–55.
[9] Avduevskiy V.S., Ashratov E.A., Ivanov A.V., Pirumov U.G. Gazodinamika sverkhzvukovykh neizobaricheskikh struy [Gas dynamics of supersonic non-isobaric jets]. Moscow, Mashinostroenie Publ., 1989, 320 p.
[10] Avduevskiy V.S., Ivanov A.V., Karpman I.M., Traskovskiy I.D., Yudelovich M.Ya. Mekhanika zhidkosti i gaza — Fluid Dynamics, 1972, no. 3, pp. 15–29.
[11] Yurchenko I.I., Klimenko A.G., Kudinov A.S., Isakov D.V. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 11. http://dx.doi.org/10.18698/2308-6033-2018-11-1820
[12] Dorrance W.H. Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers. Dover Publications, 2017, 352 p. [In Russ.: Dorrance W.H. Giperzvukovye techeniya vyazkogo gaza. Moscow, Mir Publ., 1966, 479 p.].
[13] Hayes W.D., Probstein R.F. Hypersonic flow theory. Academic Press, New York, 1959, 464 pp. [In Russ.: Hayes W.D., Probstein R.F. Teoriya giperzvukovykh techeniy. Moscow, Izd. inostr. lit. Publ., 1962, 607 p.].