Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Modeling the processes of aerogasdynamics of structural elements of a supersonic aircraft

Published: 08.07.2019

Authors: Studennikov E.S.

Published in issue: #7(91)/2019

DOI: 10.18698/2308-6033-2019-7-1904

Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts

The purpose of the research was to study the aerodynamic features of the flow around the simplest structural elements of an aircraft, such as sharp and blunt-nose cones. For calculations we applied the perfect gas model. To describe flows with large adverse pressure gradients, we used the Menter's shear stress transfer model. We analyzed changes in the aerodynamic characteristics of the cones in a wide range of angles of attack α and flow Mach M∞ numbers. Furthermore, we investigated the parameters of the base region of the sharp cone at transonic and supersonic speeds, and compared the simulation results with the data of a physical experiment both in wind tunnels and on a ballistic installation. The comparison showed good agreement with the experimental data. Numerical simulation data can be applied to form the external appearance of aircraft for various purposes, to study the influence of the temperature factor on the flow around bodies, and to create semi-empirical models for calculating the parameters of the base region of conical bodies.

[1] Surzhikov S.T. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2005, no. 3 (60), pp. 7–34.
[2] Golubev A.G., Kalugin V.T. Aerodinamika [Aerodynamics]. Moscow, BMSTU Publ., 2010, 687 p.
[3] Golubev A.G., Remizova O.I. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, iss. 11. DOI: 10.18698/2308-6033-2018-11-1821
[4] Bulgakov V.N., Kotenev V.P., Sapozhnikov D.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 2, pp. 81–93.
[5] Savkina N.V., Bimatov V.I., Khristenko Yu.F. Vestnik Tomskogo Gosudarstvennogo Universiteta — Tomsk State University Journal, 2014, no. 1 (27), pp. 110–116.
[6] Kuzenov V.V., Polyakov K.V., Ryzhkov S.V., Studennikov E.S. Izvestiya vuzov. Ser. Fizika — Russian Physics Journal, 2018, vol. 61, no. 9 (2), pp. 42–46.
[7] Kuzenov V.V., Ryzhkov S.V. Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes. Journal of Physics: Conference Series, 2017, vol. 815, p. 012024.
[8] Ryzhkov S.V., Kuzenov V.V. New realization method for calculating convective heat transfer near the hypersonic aircraft surface. ZAMP, 2019, vol. 70, p. 46.
[9] Ryzhkov S.V., Kuzenov V.V. Analysis of the ideal gas flow over body of basic geometrical shape. International Journal of Heat and Mass Transfer, 2019, vol. 132, pp. 587–592.
[10] Kuzenov V.V., Lebo A.I., Lebo I.G., Ryzhkov S.V. Fiziko-matematicheskie modeli i metody rascheta vozdeystviya moshhnyh lazernyh i plazmennyh impulsov na kondensirovannye i gazovye sredy [Physical and mathematical models and methods for calculating the effects of high-power laser and plasma pulses on condensed and gaseous media]. 2nd ed. Moscow, BMSTU Publ., 2017, 328 p.
[11] Kuzenov V.V., Ryzhkov S.V. Approximate calculation of convective heat transfer near hypersonic aircraft surface. Journal of Enhanced Heat Transfer, 2018, vol. 25 (2), pp. 181–193.
[12] Dementev I.M., Ivanov A.A., Kartashev V.D., Mikhalev A.N., Sheludko Yu.V. Uchenye zapiski TsAGI — TsAGI Science Journal, 1981, vol. XII, no. 3, pp. 121–123.
[13] Artonkin V.G., Leutin P.G., Petrov K.P., Stolyarov E.P. Trudy TsAGI im. prof. N.E. Zhukovskogo (Proceedings of TsAGI), 1972, no. 1413, 93 p.
[14] Petrov K.P. Aerodinamika tel prosteyshikh form [Aerodynamics of bodies of the simplest forms]. Moscow, Fizmatlit Publ., 1998, 428 p.
[15] Mikhalev A.N. Teplofizika i aeromehanika — Thermophysics and Aeromechanics, 2008, vol. 15, no. 3, pp. 471–479.
[16] Kovalenko V.V., Kravtsov A. N., Melnichuk T.Yu. Uchenye zapiski TsAGI — TsAGI Science Journal, 2011, vol. XLII, no. 1, pp. 31–36.
[17] Wilcox D.C. Turbulence Modeling for CFD. La Canada, California, DCW Industries Inc., 1998, 477 p.
[18] ANSYS CFX Solver Theory Guide, Release 19.0. ANSYS Inc., 2018, 366 p.
[19] Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, vol. 32 (8), pp. 1598–1605.