Parametric study of convective heat transfer with supersonic airflow around a blunted cone
Authors: Arefiev K.Yu., Abramov M.A., Miroshnichenko S.A., Meteleshko L.I.
Published in issue: #6(90)/2019
DOI: 10.18698/2308-6033-2019-6-1886
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts
The paper focuses on a mathematical model for the parametric calculation of convective heat transfer on the surface of a blunted cone with the supersonic airflow around it. We compared the computational data with the known experiments on the cone airflow with Mach number М∞ = 8, and found the parameters of the computational grid, which allow us to have less deviation in calculation results from the experimental data. Taking into account the recommendations developed for the selection of the computational grid, we carried out the parametric study of the supersonic airflow around cones with the different half - angels in the range of Mach numbers from 4 to 10. According to the findings of the study, we made the database that describes the influence of the parameters on the coefficient of heat transfer from the supersonic airflow to the cone surface. The data obtained can be used to optimize the geometric configuration and flight modes of high-speed aircraft
References
[1] Kupryuhin A.A. Optimizatsiya teplovoy zashchity giperzvukovikh letatelnykh apparatov putem variatsii kataliticheskikh i izluchatelnykh svoystv materialov teplovoy zashchity. Avtoref. dis. kand. tekhn. nauk [Optimization of hypersonic aircraft thermal protection by varying the catalytic and radiative properties of thermal protection materials. Cand. Eng. Sc. author’s abstract]. Moscow, 2010, 22 p.
[2] Voronetskiy A.V., Arefev K.Yu., Gusev A.A. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2017, no. 1, pp. 98–111. DOI: 10.18698/0236-3941-2017-1-98-111
[3] Volkov K.N., Emelyanov V.N., Karpenko A.G. Vychislitelnye metody i programmirovanie — Numerical Methods and Programming, 2017, vol. 18, no. 4, pp. 387–405.
[4] Pletcher R.H., Tannehill J.C., Anderson D.A. Computational Fluid Mechanics and Heat Transfer. CRC Press, 2012, 774 p. [In Russ.: Pletcher R.H., Tannehill J.C., Anderson D.A. Vichislitelnaya gidromekhanika i teploobmen. In 2 vols. Vol. 1. Senin S.V., Shelman E.Yu., transl. from Engl.; G.L. Podvids, ed. Мoscow, Mir Publ., 1990, 382 p.].
[5] Voronetskiy A.V., Arefev K.Yu., Gusev A.A. Osobennosti chislennogo modelirovaniya konvektivnogo teploobmena pri sverkhzvukovom obtekanii nepronitsaemoy plastini [Features of numerical modeling of convective heat transfer with supersonic airflow of an impermeable plate]. Aktualnye problemi rossiyskoy kosmonavtiki: Materiali XXXIX akademicheskikh chteniy po kosmonavtike [Current problems of the Russian cosmonautics: Materials of XXXIX Academic Readings in Astronautics]. Moscow, BMSTU Publ., 2015, pp. 45–46.
[6] Borodin K.A. Validatsiya paketa ANSYS Fluent primenitelno k zadache turbulentnogo sverkhzvukovogo teploobmena [Validation of ANSYS Fluent as applied to the problem of turbulent supersonic heat exchange]. Available at: http://conf58.mipt.ru/static/reports_pdf/944.pdf/ (accessed May 13, 2018).
[7] ANSYS, programmniye producti – CADFEM, ANSYS [Software products CADFEM]. Available at: https://www.cadfem-cis.ru/products/ansys/ (accessed April 21, 2019).
[8] Bikov L.V., Nikitin P.V., Pashkov O.A. Trudy MAI (Proceedings of MAI), 2014, no. 78. Available at: https://mai.ru/upload/iblock/8c5/8c5f5435157866c3da79eef4568cc49b.pdf (accessed September 11, 2018).
[9] Loytsyansky L.G. Mekhanika zhidkostey i gasov [Fluid mechanics]. Moscow, Moskva Publ., 1960, 676 p.
[10] Langtry R.B., Menter F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal, December 2009, vol. 47(12), pp. 2894–2906.
[11] Gorskiy V.V., Polezhaev Yu.V. Teoriya goreniya [Combustion theory]. Moscow, Energomash Publ., 2006.
[12] Grigorev Y.N., Ershov I.V. Izvestia Rossiyskoy akademii nauk. Mekhanika zhidkostei i gasov — Fluid Dynamics, 2017, no. 1, pp. 11–27.
[13] Golomazov M.M. Fiziko-khimicheskaya kinetika v gazovoy dinamike — Physical-Chemical Kinetics, 2011. Available at: http://chemphys.edu.ru/media/published/2011-07-11-001.pdf (accessed September 11, 2018).
[14] Kozelkov A.S., Kurulin V.V., Puchkova O.L., Lashkin S.V. Vichislitelnaya mekhanika sploshnikh sred — Computational Continuum Mechanics, 2014, vol. 7, no. 1, pp. 40–51. DOI: 10.7242/1999-6691/2014.7.1.5 (accessed April 21, 2019).