Results of the parachute cluster numerical research
Authors: Ploskov S.Yu.
Published in issue: #11(155)/2024
DOI: 10.18698/2308-6033-2024-11-2403
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
Methodology of the parachute cluster aerodynamic design envisages combined implementation of the reliability computation and continuum mechanics methods. The author developed a software package making it possible to study the influence of total length of the canopy suspension in a bundle, parachutes positioning angle in the system and their number on the aerodynamic characteristics of such systems. The paper analyzes flow features of a number of the parachute clusters assembled from the conventional parachutes with and without canopy ribbing. For the first time, it demonstrates the influence of resonance phenomena in the vortex wake on the parachute bundle stability based on the numerical simulation data. Results of the experimental work with parachute clusters in the wind tunnels in Russia and abroad are analyzed. The paper highlights the canopy features that should be taken into account in constructing parachute cluster systems with various configurations and purposes.
EDN DLXQMY
References
[1] Brown W.D. Parachutes. London, England, I. Pitman & Sons, Ltd., 1951, 250 p.
[2] Lobanov N.A. Osnovy rascheta i konstruirovaniya parashyutov [Fundamentals of calculation and design of the parachutes]. Moscow, Mashinostroenie, 1965, 364 p.
[3] Knacke T.W. Parachute Recovery Systems Design Manual. Santa Barbara, Para Publishing, 1992, 512 p.
[4] Lyalin V.V., Morozov V.I., Ponomarev A.T. Parashyutnye sistemy: problemy i metody ikh resheniya [Parachute systems: problems and methods for solving them]. Moscow, Fizmatlit Publ., 2009, 575 p.
[5] Nosarev I.M. Eksperimentalnoe issledovanie aerodinamicheskikh kharakteristik trekhkupolnoy parashyutnoy sistemy [Experimental study of aerodynamic characteristics of the three-dome parachute system]. In: O.V. Rysev, M.P. Falunin, eds. Parashyuty i pronitsaemye tela. Sbornik statei [Parachutes and Permeable Bodies. Collection of papers]. Moscow, MSU Publ., 1980, pp. 105–114.
[6] Braun J.F., Walcott W.B. Wind tunnel study of parachute clustering. Technical Documentary Report. ASD-TDR-63-159. https://doi.org/apps.dtic.mil/sti/tr/pdf/AD0402777.pdf
[7] Ivanov P.I., Berislavsky N.Yu. Problemnye voprosy funktsionirovaniya mnogokupolnykh parashyutnykh sistem [Problematic issues of functioning of multi-dome parachute systems]. Vestnik MAI – Aerospace MAI Journal, vol. 27, no. 1, pp. 43–52. https://doi.org/10.34759/vst-2020-l-43-52
[8] Ploskov S.Yu. Metodika chislennogo modelirovaniya mnogokupolnykh parashyutnykh sistem [Methodology of the parachute cluster numerical simulation]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2024, issue 10. EDN FUCLRU
[9] Ploskov S.Yu. Printsipy proektirovaniya i obespecheniya nadezhnosti parashyutnykh sistem pilotiruemykh kosmicheskikh apparatov [Principles of designing and ensuring reliability of parachute systems for foreign manned spacecraft]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2022, no. 3 (142), pp. 18–39.
[10] Lee C.K., Lanza J., Buckley J. Apparatus and measuring angular position of parachute canopies. In: 13th AIAA Aerodynamic Decelerator Systems Technology Conference. AIAA 95-1544-CP. May 1995.