Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Perturbed motion dynamics of the launch vehicle reusable elastic unit in the landing phase

Published: 17.09.2024

Authors: Smetana V.V., Davydov I.E., Lazarev A.A.

Published in issue: #9(153)/2024

DOI: 10.18698/2308-6033-2024-9-2389

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The conducted study of the disturbed motion dynamics of the launch vehicle reusable elastic unit determines the nominal trajectory parameters, and assesses the disturbed motion dynamics of the reusable rocket elastic unit. The paper considers the influence of a number of factors, including the structure wind loading and elasticity. Eigenmodes and frequencies of the elastic transverse bending vibration over the flight time are identified. Deviations from the nominal trajectory, as well as deviations in speed and altitude when moving to the target return area, are computed. Alteration in the elastic unit attack angle under the disturbances influence is studied. The paper substantiates introduction of a proportional integral differential regulator as the control system and its ability to ensure the launch vehicle position in its nominal trajectory. Effectiveness of this approach in solving problems of stabilizing and controlling the launch vehicle reusable elastic unit is proven.

EDN KBGOOW


References
[1] Lee Hyeong Jin, Woosung Cho, Sang Wook Ko, Yeol Lee. Aerodynamic characteristics of the grid fins on SpaceX Falcon 9. Journal of the Korean Society for Aeronautical & Space Sciences, 2020, vol. 48, pp. 745–752.
[2] Falcon 9 launch vehicle. Payload User’s Guide. 2015. Available at: https://spacex.com.pl/files/2017-10/falcon-9-users-guide-rev2.0.pdf?4f8d2248dc (accessed November 20, 2023).
[3] Bojun Zhang. High-precision adaptive predictive entry guidance for vertical rocket landing. Journal of Spacecraft and Rockets, November–December 2019, vol. 56, no. 6. https://arc.aiaa.org/doi/pdf/10.2514/1.A34450
[4] Morgado F.M.P., Marta A.C., Gil P.J.S. Multistage rocket preliminary design and trajectory optimization using a multidisciplinary approach. Struct Multidisc Optim., 2022, vol. 65, p. 192. https://doi.org/10.1007/s00158-022-03285-y
[5] Samokhin S.V., Vorypaeva T.P., Davydov I.E. Issledovanie skhem vozvrashcheniya upravlyaemogo bloka pervoy stupeni rakety-nositelya v zonakh maksimalnogo skorostnogo napora [Study of the return schemes of the first stage controlled block of the launch vehicle in the zones of maximum dynamic pressure]. In: Upravlenie dvizheniem i navigatsiya letatelnykh apparatov: sb. tr. XXV Vseros, seminara po upr. dvizheniem i navigatsii letat. apparatov (Samara, 15–17 iyuniya 2022 g.) [Motion control and navigation of the flying vehicles: Coll. proc. of the XXV All-Russian seminar on motion control and navigation of the flying vehicles (Samara, June 15–17, 2022)]. Samara, Samara University Publ., 2022, pp. 37–39.
[6] Smetana V.V., Davydov I.E. Issledovanie dinamicheskikh kharakteristik tyazheloy rakety-nositelya [Study of dynamic characteristics of a heavy launch vehicle]. In: Upravlenie dvizheniem i navigatsiya letatelnykh apparatov: sb. tr. XXV Vseros, seminara po upr. dvizheniem i navigatsii letat. apparatov (Samara, 15–17 iyuniya 2022 g.) [Motion control and navigation of the flying vehicles: Coll. proc. of the XXV All-Russian seminar on motion control and navigation of the flying vehicles (Samara, June 15–17, 2022)]. Samara, Samara University Publ., 2022, pp. 40–48.
[7] Ge Zhilei, Li Yanling, Ma Shaoxiong. Attitude stabilization of rocket elastic vibration based on robust observer. Aerospace, 2022, vol. 9, p. 765. https://doi.org/10.3390/aerospace9120765
[8] Zolotukhina O.I., Gorbatenko V.P., Varenik P.A. Kharakteristiki vetra, ogranichivayushchie “Baykonur” i “Vostocnyi” [Characteristics of the wind limiting Baikonur and Vostochny]. Trudy GTO — Proceedings of the Main Geophysical Observatory, 2015, no. 578, pp. 174–191.
[9] Nesterenko M.Yu., Nesterenko A.M., Bukhvalova A.V. Raschet zhestkosti balochnoy mnogomassovoy sistemy po chastotam sobstvennykh kolebaniy [Calculation stiffness of multimass beam system over natural oscillations frequencies]. BONTs UrO RAN, 2018, no. 4. Available at: https://cyberleninka.ru/article/n/raschyot-zhyostkosti-balochnoy-mnogomassovoy-sistemy-po-chastotam-sobstvennyh-kolebaniy (accessed June 07, 2024).
[10] Polyak B.T., Khlebnikov M.V. Novye kriterii nastroyki PID-regulyatorov [New criteria in tuning the PID controllers]. Avtomat. i telemekh. — Autom. Remote Control, 83:11 (2022), 1724–1741.