Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Optimizing the launch vehicle control in the second stage flight segment

Published: 01.08.2024

Authors: Shakmaev I.V. I.V., Dolgolevets O.N., Lukin A.V., Polekhin A.A., Zubov A.A.

Published in issue: #8(152)/2024

DOI: 10.18698/2308-6033-2024-8-2380

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper considers the problem of a payload heating under exposure to the atmosphere affecting the payload fairing the launch vehicle second stage flight segment. Maximum heating of the Soyuz-2.1 payload fairing conical shell is examined for the case of launching the Glonass-K2 spacecraft. Computation data are compared with the experimental values, and satisfactory results are obtained. Predictive dynamics in the payload fairing jettison is identified. Energy reserves are assessed, as well as the economic benefits obtained by optimizing the payload fairing jettison time. Static processing results are provided for the Soyuz-2.1 launch vehicles of all types and the Angara-1.2 launch vehicle for 10 tests.

EDN KDJSSY


References
[1] Lipnitsky Yu.M., Krasilnikov A.V., Pokrovsky A.N., Shmanenkov V.N. Nestatsionarnaya aerodinamika ballisticheskogo poleta [Non-stationary aerodynamics of ballistic flight]. Moscow, Fizmatlit Publ., 2003, 176 p.
[2] Iordan Yu.V., Davydovich D.Yu., Zharikov K.I., Dron M.M. Eksperimentalnye issledovaniya teplovogo nagruzheniya elementa golovnogo obtekatelya rakety na atmosfernom uchastke ego spuska [Experimental studies of thermal loading on the rocket payload fairing element in the atmospheric section of its descent trajectory]. Dinamika sistem, mekhanizmov i mashin — Dynamics of Systems, Mechanisms and Machines (Dynamics), 2017, vol. 5, no. 2, pp. 37–42.
[3] Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teploobmen izlucheniem: Spravochnik [Radiation Heat Transfer: Handbook]. Moscow, Energoatomizdat Publ., 1991, 432 p.
[4] Kharitonova A.N., Shakhov V.G. Osobennosti resheniya prostranstvennykh zadach obtekaniya raket-nositeley s nadkalibernymi golovnymi obtekatelyami s ispolzovaniem programmnogo kompleksa ANSYS Fluent [Peculiarities of solving three-dimensional problems of flow around a launch vehicle with large nose fairings using the ANSYS Fluent software]. Vestnik Saratovskogo gosudarstvennogo aerokosmicheskogo universiteta — VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2012, no. 4 (35), pp. 116–123.
[5] Mashinostroenie. Entsiklopediya. T. 1-2. Teoreticheskaya mekhanika. Termodinamika. Teploobmen [Mechanical Engineering. Encyclopedia. Vol. I-2. Theoretical Mechanics. Thermodynamics. Heat Transfer]. Moscow, Mashinostroyenie Publ., 2003, 600 p.
[6] Avduevsky V.S., Uspensky G.R. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of heat transfer in aviation and rocket-space engineering]. Moscow, Mashinostroenie Publ., 1975, 382 p.
[7] Ventsel E.S. Teoriya veroyatnostey [Probability Theory]. 6th ed., ster. Moscow, Vysshaya Shkola Publ., 1999, 576 p.
[8] Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmiches-kogo apparata [Calculation of the spacecraft heat transfer]. Moscow, Mashinostroenie Publ., 1979, 208 p.
[9] Hemsha M., Nielsen J. et al. Aerodinamika raket. V 2 kn. Kn. 2. Metody aerodinamicheskogo rascheta [Rocket Aerodynamics. In 2 books. Book 2. Methods of Aerodynamic Calculation]. Moscow, Mir Publ., 1989, 512 p.
[10] Petrov G.I. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchey ego sredy [Simulating thermal conditions of a spacecraft and its environment]. Moscow, Mashinostroenie Publ., 1971, 382 p.