Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Efficiency analysis of methods in assessing the man-made space objects motion parameters based on the heterogeneous measurement data

Published: 14.05.2024

Authors: Gavrilova A.A., Belyaev A.A., Stupak G.G.

Published in issue: #5(149)/2024

DOI: 10.18698/2308-6033-2024-5-2360

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper reviews methods used in assessing (refining) motion parameters of the man-made space objects (MMSO). It analyzes their applicability in solving the problem of processing the heterogeneous measurement data obtained from different types of technical means in monitoring the near-Earth space. Based on the analysis results, the paper identifies features, advantages and disadvantages of methods within the framework of solving the problem. Selection of these methods’ modifications is substantiated making it possible to compensate for the identified shortcomings. Modifications under consideration are comparatively analyzed in terms of the obtained estimation efficiency, accuracy in assessing the MMSO orbital motion parameters, as well as the robustness. Recommendations are formulated for effective introduction of the considered modifications of methods in assessing the MMSO motion parameters depending on the priority of one or another criterion for effectiveness of solving the assessment problem with the varying amount of measurement data and duration of the measurement interval.


[1] Aleshin V.I., Astrakhantsev M.V., Afanasyeva T.I. et al. Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom [Monitoring man-made contamination of the near-Earth space and warning about hazardous situations created by the space debris]. Yu.N. Makarov, ed. Ryazan, RINFO Publ., 2015, 243 p.
[2] Kontseptsiya sozdaniya sistemy informatsionno-analiticheskogo obespecheniya bezopasnosti kosmicheskoy deyatelnosti v okolozemnom kosmicheskom prostranstve “Mlechnyi put” na period 2022–2025 godov i na perspektivu do 2035 goda [The concept of creating the information and analytical support system for the space activities safety in the near-Earth space “Milky Way” for the period 2022–2025 and for the future until 2035]. Available at: (accessed March 1, 2024).
[3] Tyulin A.E., Betanov V.V., Kobzar A.A. Navigatsionno-ballisticheskoe obespechenie poleta raketno-kosmicheskih sredstv. Metody, modeli i algoritmy otsenivaniya parametrov dvizheniya [Navigation and ballistic support of the rocket and space systems flight. Methods, models and algorithms for estimating the motion parameters]. In 2 books. Book 1. Moscow, Radiotekhnika Publ., 2018, 480 p.
[4] Mudrov V.I., Kushko V.L. Metody obrabotki izmereniy: Kvazipravdopodobnye otsenki. [Measurement processing methods: Quasi-plausible estimates]. 2nd ed., rev. and enl. Moscow, Radio i Svyaz Publ., 1983, 304 p.
[5] Mironov V.I., Mironov Yu.V., Khegay D.K. Optimalnoe opredelenie orbity kosmicheskih obyektov po uglovym izmereniyam nazemnykh optiko-elektronnykh stantsii [Optimal determination of space objects orbit by angular measurements of ground-based optoelectronic stations]. Trudy SPIIRAN, 2019, vol. 8, no. 5, pp. 1239–1263.
[6] Horwood J.T., Poore A.B., Gauss von Mises. Distribution for improved uncertainty realism in space situational awareness. SIAM/ASA Journal of Uncertainty Quantifunction, 2014, vol. 2, no. 1, pp. 276–304.
[7] Jones B.A., Doostan A., Born G.H. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polinomial Chaos. Journal of Guidance, Control, and Dynamics, 2013, vol. 36, no. 2, pp. 430–444.
[8] DeMars K.J., Bishop R.H., Jah M.K. Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems. Journal of Guidance, Control, and Dynamics, 2013, vol. 36, no. 4, pp. 1047–1057.
[9] Bayramoglu E., Ravn O. A Novel hypothesis splitting method implementation for multi-hypothesis filters. In: Proc. 10th IEEE Int. Conf. on Control and Automation (ICCA). Hangzhou, China, June 12–14, 2013, pp. 574–579.
[10] Psiaki M. Gaussian mixture nonlinear filtering with resampling for mix and narrowing. IEEE Transactions on Signal Processing, 2016, vol. 6, no. 21, pp. 5499–5512.
[11] Mendis B.S.U., Gedeon T.D., Koczy L.T. Learning generalized weighted relevance aggregation operators using Levenberg—Marquardt method. In: IEEE Proc. of the Sixth Int. Conf. on Hybrid Intelligent Systems (CIMCA’06). Sydney, Australia, 2006, pp. 34–39.
[12] Levenberg K. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 1944, vol. 2, no. 2, pp. 164–168.
[13] Julier S.J.; Uhlmann J.K. A new extension of the Kalman filter to nonlinear systems. In: Proc. of the Int. Conf. “Signal Processing, Sensor Fusion, and Target Recognition”. Orlando FL, 1997, pp. 182–193.
[14] Wan E.A., Van der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation. In: Proc. of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). 2000, p. 153. CiteSeerX ISBN 978-0-7803-5800-3.
[15] Borodavkin L.V. Postroenie parametrov traektorii s ispolzovaniem filtra Kalmana s shagom korrektsii po vsem izmereniyam v RLS dalnego obnaruzheniya [The Kalman filter track parameter estimation with update step by all accumulated measurements for the long-range radar]. Radiopromyshlennost, 2016, vol. 126, no. 1, pp. 28–32.