Studying stability of the geophysical capsule motion on a cable suspension
Authors: Salenko S.D., Gosteev Yu.A., Krasnorutsky D.A.
Published in issue: #11(143)/2023
DOI: 10.18698/2308-6033-2023-11-2318
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The paper presents a study of the lateral motion stability of a geophysical capsule on the cable suspension using experimental, analytical and numerical methods. The variable area vertical tail (VT) was used to stabilize the capsule. The cable length was also varying. Physical experiment and numerical simulation were introduced to identify two zones of stable motion in the “speed – VT relative area” parameters plane corresponding to the low and high motion speed. Those zone boundaries were in good quantitative agreement; and the left boundary corresponding to the capsule low velocities was also quite accurately predicted by the analytical model. Capsule stability in the “speed – cable length” parameters plane was studied using the analytical method. Decrease in the stable motion zone was established with the increasing cable length. It was shown that an increase in the vertical tail relative area by 4 times led to a decrease in the capsule critical speed by 3 times.
References
[1] Volodko A.M., Serov A.Ya. Dvizhenie nesushchego tela s gruzom na vneshney podveske [Motion of a supporting body with a load on the external suspension]. Izvestiya AN SSSR. Mekhanika tverdogo tela — Proceedings of the USSR Aca-demy of Sciences. Mechanics of Solids, 1988, no. 1, pp. 12–15.
[2] Kozlovsky V.B., Kublanov M.S. Matematicheskaya model poleta vertoleta s gruzom na vneshney podveske [Mathematical model of the helicopter flight with the externally suspended load]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2004, no. 72, pp. 5–9.
[3] Kozlovsky V.B., Parshentsev S.A., Efimov V.V. Vertolet s gruzom na vneshney podveske [Helicopter with cargo on the external sling]. Moscow, Mashinostroenie—Polet Publ., 2008, 304 p.
[4] Efimov V.V. Dinamicheskaya ustoychivost gruza na trosovoy vneshney podveske vertoleta [Investigation of the Dynamic Stability of Cargo on the Helicopter External Sling]. Obscherossiyskiy nauchno-tekhnicheskiy zhurnal “Polet” —All-Russian Scientific-Technical Journal “Polet” (Flight), 2011, no. 3, pp. 26–32.
[5] Serebryakov P.N. Issledovanie vozmozhnostey povysheniya stabilizatsii kharakternykh gruzov, transportiruemykh vertoletami na vneshney podveske: Dis. … kand. tekhn. nauk [Research on the possibilities of increasing stabilization of typical loads transported by helicopters on the external sling: Diss. Cand. Sc. (Eng.)]. Riga, 1985, 163 p.
[6] Sviridenko A.N. Matematicheskaya model sistemy “vertolet-gruz” na vneshney podveske [Math model for the “helicopter-external load dynamic system]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2007, no. 111, pp. 129–134.
[7] Efimov V.V. Matematicheskoe opisanie dvizheniya gruza na vneshney podveske vertoleta [The mathematical description of the cargo motion on the helicopter external sling]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2007, no. 111, pp. 121–128.
[8] Efimov V.V. Osobennosti integrirovaniya differentsialnykh uravneniy dvizheniya gruza na vneshney podveske vertoleta [Features of the differential equations integration of the cargo movement on the helicopter external sling]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2009, no. 138, pp. 134–141.
[9] Kalugin V.T., Kindyakov E.B., Lutsenko A.Yu., Stolyarova E.G. Aerodinamicheskaya Stabilizatsiya gruzov na vneshney podveske letatelnykh apparatov [Aerodynamic stabilization of cargo on the aircraft external sling]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2007, no. 111, pp. 100–104.
[10] Kalugin V.T., Kindyakov E.B., Stolyarova E.G. Obtekanie i Stabilizatsiya konteynernykh ustroystv na vneshney podveske letatelnykh apparatov [Flow around and stabilization containers on an external suspension of flying vehicles]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost — Civil Aviation High Technologies. Ser. Aeromechanics and Strength, 2007, no. 111, pp. 105–109.
[11] O zadache ustoychivosti dvizheniya kapsuly magnitometra na trose v potoke vozdukha [On the problem of stability of a magnetometer capsule motion on a cable in the air flow]. In: Reshetnevskie chteniya: materialy 15 mezhdunar. nauch. konf., posvyashch. pamyati gener. konstruktora raket.-kosm. sistem akad. M.F. Reshetneva: v 2 ch. [Reshetnev readings: materials of the 15th international. scientific conference dedicated to memory of the rocket and space systems General Designer Academician M.F. Reshetnev: in 2 parts]. Krasnoyarsk, Sib. Gos. Aerokosm. Un-t im. M.F. Reshetneva Publ., 2011, part 1, 427 p.
[12] Krasnorutsky D.A., Lakiza P.A., Shelevaya D.R. Programmnyi kompleks dlya modelirovaniya mekhaniki sistem tonkikh uprugikh sterzhney [A software package for modeling mechanics of a system of thin elastic rods]. In: Kraevye zadachi i matematicheskoe modelirovanie: temat. sb. nauch. st. [Boundary problems and mathematical modeling: thematic collection of scientific articles]. Novokuznetsk, Izd-vo KGPI KemGU Publ., 2023, pp. 57–60.
[13] Pustovoy N.V., Levin V.E., Krasnorutsky D.A. Algoritm chislennogo resheniya nelineynoy kraevoy zadachi dinamicheskogo deformirovaniya tonkogo sterzhnya [The numerical algorithm for solving nonlinear boundary problem of thin rod’s dynamic deformation]. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika — Perm National Research Polytechnic University Mechanics Bulletin, 2014, no. 2, pp. 168–199.
[14] Park K.S. An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations. ASME J. of Applied Mechanics, 1975, vol. 42 (2), pp. 464–470. https://doi.org/10.1115/1.3423600
[15] Pereyra V. High order finite difference solution of differential equations. Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973, 86 p.
[16] Gozdek V.S. O modeli materiala s vnutrennim treniem [About a model of material with internal friction]. Uchenye zapiski TsAGI – TsAGI Science Journal, 1982, vol. XIII, no. 2, pp. 142–146.