Comprehensive evaluation of analytical and numerical models of the Solar System planets ephemerides on the example of the near-Earth spacecraft
Authors: Toporkov A.G., Kozlov E.A.
Published in issue: #8(140)/2023
DOI: 10.18698/2308-6033-2023-8-2300
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The paper presents a developed algorithm for using the high-precision numerical ephemerid models. Qualitative and quantitative comparison of analytical and numerical high-precision planetary ephemerid models was carried out, including NASA averaged elements model, Newcomb model, Mees model, DE/LE series models and EPM series models. Absolute values of the radius vector residuals for each planet of the Solar System were obtained within the framework of the considered ephemerid models. Integration methods were evaluated, including Runge—Kutta method of the 4th order, Adams method of the 16th order and Dorman-Prince method of the 5(4)th order. Results of evaluating accuracy and efficiency of calculations depending on the integration stage were obtained. Values of perturbing accelerations from the Sun, Moon and planets for a GLONASS-type spacecraft were calculated. Practical recommendations are provided for using analytical and numerical planetary ephemerides in simulation of the near-Earth spacecraft motion.
References
[1] Toporkov A.G., Koryanov V.V., Du Chongrui. Uchet parametrov vrascheniya Zemli dlya vysokotochnogo imitatsionnogo modelirovaniya dvizheniya sputnikov GLONASS v interesakh grazhdanskikh potrebiteley [Parameters of the Earth’s rotation taken into account in high-precision simulation of the GLONASS satellites motion in the interests of civil consumers]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2020, iss 10. https://doi.org/10.18698/2308-6033-2020-10-2025
[2] Toporkov A.G. Analiz vliyaniya vozmuscheniy ot Luny, Solntsa i planet Solnechnoy sistemy na dvizhenie kosmicheskogo apparata GLONASS [Analysis of the influence of disturbances from the Moon, the Sun and planets of the solar system on the motion of the GLONASS spacecraft]. In: XLII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya”: Sbornik tezisov dokladov [XLII International Youth Scientific Conference “Gagarin Readings. Collection of abstracts]. In 4 vols. Vol. 1. Moscow, MAI Publ., 2016, pp. 193194.
[3] Kozlov E.A., Toporkov A.G. Prognozirovaniye dvizheniya kosmicheskikh apparatov s ispolzovaniyem efemerid planet i Luny IPA RAN i JPL NASA [Forecasting the motion of spacecraft using the ephemeris of the planets and the Moon IAA RAS and JPL NASA]. In: Materialy LI Nauchnykh chteniy pamyati K.E. Tsiolkovskogo [Proceedings of the LI Scientific readings in memory of K.E. Tsiolkovsky]. Kaluga, Eydos Publ., 2016, p. 152.
[4] Toporkov A.G., Kozlov E.A. Vliyaniye vysokotochnykh chislennykh efemerid planet i Luny na tochnost prognozirovaniya dvizheniya kosmicheskikh apparatov [Influence of high-precision numerical ephemeris of the planets and the Moon on the accuracy of forecasting the movement of spacecraft]. In: Materialy XLI Akademicheskikh chteniy po kosmonavtike. Sbornik tezisov chteniy, posvyaschennye pamyati akademika S.P. Koroleva i drugikh vydayuschikhsya otechestvennykh uchenykh — pionerov osvoeniya kosmicheskogo prostranstva [Materials of the XLI Academic readings on cosmonautics. Collection of abstracts of readings dedicated to the memory of Academician S.P. Korolev and other outstanding domestic scientists — pioneers of space exploration]. Moscow, BMTSU Publ., 2017, 310 p.
[5] Brumberg V.A., Glebova N.I., Lukashova M.V., Malkov А. А., Pitjeva E.V., Rumyantseva L.I., Sveshnikov M.L., Fursenko М. А. Rasshirennoe obyasnenie k «Astronomicheskomu ezhegodniku» [Extended explanation to the “Astronomical Yearbook”]. Transactions of IAA RAS, Iss. 10. Saint Petersburg, 2004, 488 p. Available at: https://iaaras.ru/about/issues/transactions/t10/ (accessed January 27, 2023).
[6] Netsvetaeva G.A. Avtomatizatsiya izdaniya astronomicheskikh yezhegodnikov Dis. … kand. fiz.-mat. nauk [Automation of publishing astronomical yearbooks. Diss. … Cand. Sc. (Phys.-Math.)]. Saint Petersburg, 1999, 135 p.
[7] Astronomical papers prepared for the use of the American ephemeris and nautical almanac. Volume 6. Internet Archive. Available at: https://archive.org/details/06AstronomicalPapersPreparedForTheUse/page/n9/mode/2up (accessed January 27, 2023).
[8] Murison M.A. Modeling planetary motions: why we care and how we do it. Astronomical Applications Dept., U.S. Naval Observatory, 1999, pp. 1–20. Available at: https://www.researchgate.net/publication/253219266_Modeling_Planetary_Motions_Why_We_Care_and_How_We_Do_It (accessed January 27, 2023).
[9] Institute de mécanique céleste et de calcul des éphémérides. IMCCE. Available at: https://www.imcce.fr/institut/presentation/ (accessed January 27, 2023).
[10] Simon J.L., Francou G., Fienga A., Manche H. New analytical planetary theories VSOP2013 and TOP2013. Astronomy & Astrophysics, 2013, vol. 557, pp. 1–12. https://doi.org/10.1051/0004-6361/201321843
[11] Approximate Positions of the Planets. Jet Propulsion Laboratory. NASA. Available at: https://ssd.jpl.nasa.gov/planets/approx_pos.html (accessed January 27, 2023).
[12] Kholshevnikov K.V., Titov V.B. Zadacha dvukh tel [The problem of two bodies]. Saint Petersburg, SPBGU Publ., 2007, 180 p.
[13] Meeus J. Astronomical Algorithms. 2nd ed. Willmann-Bell Publ., 1998, 477 p.
[14] Pitjeva E.V. Sovremennye chislennye teorii dvizheniya Solntsa, Luny i bolshikh planet [Modern numerical ephemerides of the Sun, the Moon and major planets]. In: Preprints of IAA RAS No. 156. Saint Petersburg, 2003, 33 p.
[15] Standish E., Williams J.G. Chapter 8: Orbital Ephemerides of the Sun, Moon and Planets. University Science Books, 2006, 33 p.
[16] Newhall X.X., Standish E.M., Williams J.G. DE102: a numerical integrated ephemeris of the Moon and planets spanning forty-four centuries. Astron. & Astrophys., 1983, no. 125, pp. 150–167. Available at: https://ui.adsabs.harvard.edu/abs/1983A%26A...125..150N/abstract (accessed January 27, 2023).
[17] Estabrook F. B. Post-Newtonian n-body equations of the Brans-Dicke theory. The Astrophysical Journal, vol. 158, pp. 81–83. Available at: http://www.modsys.narod.ru/Library/For_Stat/Estabrook_F_B_1.pdf (accessed January 27, 2023).
[18] Krasinsky G.A., Pitjeva E.V., Vasilyev M.V., Yagudina E.I., 2002. Hidden mass in the asteroid belt. Icarus, 2002, no. 158, pp. 98–105. https://doi.org/10.1006/icar.2002.6837
[19] Alekseev S.O., Pamyatnykh E.A., Ursulov A.V., Tretyakova D.A., Rannu K.A. Vvedenie v Obschuyu teoriyu otnositelnosti, ee sovremennoe razvitie i prilozheniya [Introduction to General Relativity, its modern development and applications]. Ekaterinburg, UrFU Publ., 2015, 380 p. Available at: https://elar.urfu.ru/handle/10995/36218 (accessed January 27, 2023).
[20] Bateman H., Eritelyi A. Higher Transcendental Functions. New York, McGraw-Hill Book Company, Inc., 1953, vol. 3, 310 p. Available at: https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738 (accessed January 27, 2023).
[21] Efemeridy EPM [EPM ephemeris]. IAA RAS. Available at: http://iaaras.ru/dept/ephemeris/epm/ (accessed January 27, 2023).
[22] FTP server [FTP server]. IAA RAS. Available at: ftp://ftp.iaaras.ru/pub/epm (accessed January 27, 2023).
[23] Hilton J.L., Acton C., Arlot J.-E. Report of the IAU Commission 4 Working Group on Standardizing Access to Ephemerides and File Format Specification. July 16, 2015, pp. 41. Available at: https://syrte.obspm.fr/jsr/journees2013/pdf/Hilton.pdf (accessed January 27, 2023).
[24] The SPICE Toolkit. NAIF. Available at: https://naif.jpl.nasa.gov/naif/toolkit.html (accessed January 27, 2023).
[25] The International Astronomical Union. Available at: https://www.iau.org/ (accessed January 27, 2023).