Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Overview of the distributed computational technologies used in construction of the advanced small spacecraft orbital constellations and ensuring their fail-safe and fault-tolerant operation

Published: 23.06.2023

Authors: Asharina I.V., Grishin V.Yu., Sirenko V.G.

Published in issue: #6(138)/2023

DOI: 10.18698/2308-6033-2023-6-2286

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper examines issues of introducing the distributed computational technologies in constructing the fail-safe and fault-tolerant control systems for spacecraft constellations of various purposes. Various target objectives require various tools to achieve the task. Comparative analysis of the existing distributed computational technologies operating with the responsive application systems was performed including the spacecraft constellation control systems, to identify the most acceptable solutions. Principles of constructing the network-centric systems in controlling the spacecraft constellations were considered. Distributed computational technologies were analyzed not only from the point of view of solving the target problems by the spacecraft constellations, but also from the point of view of ensuring their reliability, as well as in organizing the spacecraft constellation control systems.


References
[1] Potyupkin A.Yu., Danilin N.S., Selivanov A.S. Klastery malorazmernykh kosmicheskikh apparatov kak novyi tip kosmicheskikh obyektov [Small satellites clusters — a new type of space objects]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2017, vol. 4, no. 4, pp. 45–56.
[2] Dianov V.N. Diagnostika sboev v elektronnoy apparature [Diagnostics of malfunctions in electronic apparatus]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie — Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2007, no. 2, pp. 116–147.
[3] Lobanov A.V. Modeli zamknutykh mnogomashinnykh vychislitelnykh sistem so sboe- i otkazoustoychivostyu na osnove replikatsii zadach v usloviyakh vozniknoveniya vrazhdebnykh neispravnostey [Models of closed multimachine computing systems with fail-free and fault tolerance based on task replication in facing the hostile faults]. Avtomatika i telemekhanika — Automation and Remote Control, 2009, no. 2, pp. 171–189.
[4] Potyupkin A.Yu., Panteleimonov I.N., Timofeev Yu.A., Volkov S.A. Upravlenie mnogosputnikovymi orbitalnymi gruppirovkami [Control of multi-satellite orbital constellations]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket-Space Device Engineering and Information Systems, 2020, vol. 7, no. 3, pp. 61–70.
[5] Asharina I.V., Lobanov A.V. Sistemnoe vzaimnoe informatsionnoe soglasovanie v sboe- i otkazoustoychivykh setetsentricheskikh sistemakh [Systemic mutual information coordination in fail-free and fault-tolerant network-centric systems]. In: Materialy Vserossiyskoy konferentsii “XII Vserossiyskoe soveschanie po problemam upravleniya” VSPU-14, Moscow, IPU RAN, 16-19 iyunya 2014 g. [Proceedings of the All-Russian Conference “XII All-Russian Conference on Management Problems” VSPU’14, Moscow, IPU RAS, June 16–19, 2014]. Moscow, 2014, pp. 7387–7392.
[6] Avizhenis A. Otkazoustoychivost — svoystvo, obespechivayuschee postoyannuyu rabotosposobnost tsifrovykh sistem [Fault tolerance: the survival attribute of digital systems]. TIIER — Proceeding of the IEEE, 1978, vol. 66, no. 10, pp. 5–25.
[7] Avizhenis A., Lapri Zh.-K. Garantosposobnye vychisleniya: ot idey do realizatsii [Guaranteed computing: from ideas to implementation]. TIIER — Proceeding of the IEEE, 1986, vol. 74, no. 5, pp. 8–21.
[8] Vasiliev D.G., Betanov V.V. Primenenie metodov imitatsionnogo modelirovaniya v zadachakh izucheniya dvizheniya okolozemnykh kosmicheskikh apparatov [Use of simulation modelling methods in problems of studying the near-Earth spacecraft motion]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss. 7. https://doi.org/10.18698/2308-6033-2016-07-1513
[9] Mikrin E.A., Mikhailov M.V. Navigatsiya kosmicheskikh apparatov po izmereniyam ot globalnykh sputnikovykh navigatsionnykh sistem [Spacecraft navigation based on measurements from the global satellite navigation systems]. 2nd ed. Moscow, BMSTU Publ., 2018, 345 p.
[10] Asharina I.V., Lobanov A.V. Vydelenie kompleksov, obespechivayuschikh dostatochnye strukturnye usloviya sistemnogo vzaimnogo informatsionnogo soglasovaniya v mnogokompleksnykh sistemakh [Extracting complexes that ensure sufficient structural conditions for system mutual informational coordination in multicomplex systems]. Avtomatika i telemekhanika — Automation and Remote Control, 2014, no. 6, pp. 115–131.
[11] Asharina I.V., Lobanov A.V. Vydelenie strukturnoy sredy sistemnogo vzaimnogo informatsionnogo soglasovaniya v mnogokompleksnykh sistemakh [The allocation of the structural environment of the system mutual information matching in mnogokomponentnyh systems]. Avtomatika i telemekhanika — Automation and Remote Control, 2014, no. 8, pp. 146–156.
[12] Antonov A.S. Parallelnoe programmirovanie s ispolzovaniem tekhnologii Open MP [Parallel programming using the OpenMP technology]. Moscow, MGU Publ., 2009, 77 p.
[13] Gergel V.P. Sovremennye yazyki i tekhnologii parallelnogo programmirovaniya [Modern languages and technologies of parallel programming]. Moscow, Moscow University Publ., 2012, 408 p.
[14] Kopysov S.P., Novikov A.K. Promezhutochnoe programmnoe obespechenie parallelnykh vychisleniy [Middleware for parallel computing]. Izhevsk, Udmurtskiy Universitet Publ., 2012, 140 p.
[15] Boreskov A.V., et al. Parallelnye vychisleniya na GPU. Arkhitektura i programmnaya model CUDA [Parallel computing on GPU. Architecture and programming model of CUDA]. Moscow, Moscow University Publ., 2012, 336 p.
[16] Rusin E.V. Tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli na gibridnom klastere NKS-30T++GPU., Interekspo Geo-Sibir, 4:1 [Data processing technologies for remote sensing of the Earth on a hybrid cluster NKS-30T + GPU., Interexpo Geo-Siberia, 4:1]. In: Trudy XII Mezhdunarodnogo nauchnogo kongressa i vystavki "INTEREKSPO GEO-Sibir’-2016", T. 1. “Distantsionnyye metody zondirovaniya Zemli i fotogrammetriya, monitoring okruzhayushchey sredy, geoekologiya”, 18–22 aprelya 2016, g. Novosibirsk [Proceedings of the XII International Scientific Congress and Exhibition “INTEREXPO GEO-Siberia-2016”, vol. 1. “Remote methods of Earth sensing and photogrammetry, environmental monitoring, geoecology”, April 18–22, 2016, Novosibirsk], Novosibirsk, 2016, pp. 46–49.
[17] Rusin E.V. Technology of high performance image processing on multiprocessor computer. Pattern Recognition and Image Analysis, 2012, vol. 22:3, pp. 470–472.
[18] Abramov N.S., Makarov D.A., Talalaev A.A., Fralenko V.P. Sovremennye metody intellektualnoy obrabotki dannykh DZZ [Modern methods for intelligent processing of Earth remote sensing data]. Progammnye sistemy: teoriya i prilozheniya — Program Systems: Theory and Applications, 2018, vol. 9, no. 4, pp. 417–442.
[19] Klyushnikov V.Yu. Postroenie klasterov malykh kosmicheskikh apparatov [Construction of small spacecraft clusters]. Izvestiya vuzov. Priborostroenie — Journal of Instrument Engineering, 2016, vol. 59, no. 6, pp. 423–428.
[20] Koroteev A.S., Rizakhanov R.N., Sobkalov O.G. Kontseptsiya raspredelennykh kosmicheskikh apparatov na baze nanotekhnologicheskikh razrabotok [The concept of distributed space vehicles based on the nanotechnological developments]. In: Materialy VI nauchn.-prakt. konf. “Mikrotekhnologii v aviatsii i kosmonavtike” [Materials of the VI Scientific-practical conference “Micro-technologies in aviation and cosmonautics”]. Moscow, 2008.
[21] Klyushnikov V.Yu. Kontseptsiya raspredelennoy sistemy kosmicheskikh apparatov sverkhmalogo klassa (“roya”) [The concept of distributed system of the ultra-small class spacecraft (“swarm”). In: Aktualnye problemy Rossiyskoy kosmonavtiki: Tr. XXXVI Akademicheskikh chteniy po kosmonavtike [Actual problems of Russian cosmonautics: works of the XXXVI Academic readings on cosmonautics]. Moscow, Komissiya RAN po Razrabotke Nauchnogo Naslediya Pionerov Osvoeniya Kosmicheskogo Prostranstva, 2012, pp. 276–278.
[22] Klyushnikov V.Yu. Vozmozhnye napravleniya realizatsii funktsii raspredelennogo kosmicheskogo apparata [Possible directions for implementing the functions of a distributed spacecraft]. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Science, 2014, vol. 75, no. 2, pp. 66–74.
[23] Molette P., Cougnet C., Saint-Aubert P. H., Young R. W., Helas D. Technical and economical comparison between a modular geostationary space platform and a cluster of satellites. Acta Astronautica, 1984, vol. 11, no. 12, pp. 771–784.
[24] Bethscheider G. Pat. no. 6633745 USA. Satellite cluster comprising a plurality of modular satellites. October 14, 2003.
[25] Dolgov A.A., Khorokhorin M.A., Minin Yu.V., Shihuk A.B. K voprosy otsenki zhivuchesti setevykh struktur s ispolzovaniem GRID-tekhnologiy [On the issue of assessing survivability of the network structures using the GRID technologies]. Informatsionnaya bezopasnost — Information Security, 2012, no. 2, pp. 249–253.
[26] Foster I., Kesselman C., eds. The Grid 2: Blueprint for a new computing infrastructure. Elsevier, 2003.
[27] Afanasiev A.P., Voloshinov V.V., Rogov S.V., Sukhoroslov O.V. Razvitie kontseptsii raspredelennykh vychislitelnykh sred [Development of the concept of distributed computing environments]. In: Problemy vychisleniy v raspredelennoy srede: organizatsiya vychisleniy v globalnykh setyakh: Trudy ISA RAN [Problems of computing in the distributed environment: organization of computing in the global networks: Proceedings of the ISA RAS]. Moscow, ROKhOS Publ., 2004, pp. 6–105.
[28] Kovalenko V.N., Koryagin D.A. Grid: istoki, printsipy i perspektivy razvitiya [Grid: origins, principles and development prospects]. Informatsionnye tekhnologii i vychislitelnye sistemy — Information Technologies and Computing Systems, 2008, no. 4, pp. 38–50.
[29] Ryabov Yu.F., Kiryanov A.K. Tekhnologiya GRID [GRID technology]. Shkolnye tekhnologii — School technologies, 2010, no. 5, pp. 134–145.
[30] Faleev M.I., Chernykh G.S. Ugrozy natsionalnoy bezopasnosti gosudarstva v informatsionnoy sfere [Threats to national security of the state in the information sphere]. Strategiya grazhdanskoy zaschity: problemy i issledovaniya — Civil protection strategy: problems and research, 2014, vol. 4, no. 1 (6), pp. 21–34.
[31] Shamakina A.V. Obzor tekhnologiy raspredelennykh vychisleniy [Survey on distributed computing technologies]. Vestn. YuUrGU. Ser. Vych. matem. inform. — Bulletin of the South Ural State University. Series Computational Mathematics and Software Engineering, 2014, vol. 3, no. 3, pp. 51–85.
[32] Sukhoroslov O.V. Realizatsiya i kompozitsiya problemno-orientirovannykh servisov v srede MathCloud [Implementation and composition of problem solving services in the MathCloud environment]. Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie — Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 2011, no. 8, pp. 101–112.
[33] Makarenko S.I. Ispolzovanie kosmicheskogo prostranstva v voennykh tselyakh: sovremennoe sostoyanie i perspektivy razvitiya sistem informartsionno-kosmicheskogo obespecheniya i sredstv vooruzheniya [Information-space systems and space weapons - current state and prospects of improvement]. Sistemy upravleniya, svyazi i bezopasnosti — Systems of Control, Communications and Security, 2016, no. 4. [Systems of Control, Communication and Security sccs.intelgr.com] Available at: http://sccs.intelgr.com/archive/2016-04/09-Makarenko.pdf.
[34] Efremov A.Yu., Maksimov D.Yu. Setetsentricheskaya sistema upravleniya — chto vkladyvaetsya v eto ponyatie? [Network-centric control system — what is meant by this concept?]. In: Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya: trudy Tretyey Rossiyskoy konferentsii UKI-2012 s mezhdunarodnym uchastiem [Technical and software tools for control, monitoring and measurement systems: Proceedings of the Third Russian Conference USP-2012 with international participation]. Moscow, IPU RAN Publ., 2012, pp. 158–161.
[35] Lobanov A.V., Asharina I.V., Grishin V.Yu., Sirenko V.G. Maketnyi obrazets vysokoadaptivnoy raspredelennoy setetsentricheskoy mnogokompleksnoy sboe- i otkazoustoychivoy upravlyayuschey sistemy — aktualnaya problema [A prototype of a highly adaptive, distributed, net-centric, multicomplex malfunction- and a faulty-tolerant control system — a topical problem]. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli — Hi-tech Earth Space Research, 2018, vol. 10, no. 1, pp. 48–55.
[36] Asharina I.V., Lobanov A.V. Postroenie gruppirovok KA na baze sboe- i otkazoustoychivykh setetsentricheskikh sistem upravleniya [Construction of spacecraft constellations based on fail-safe and fault-tolerant network-centric control systems]. In: XII Vserossiyskoe soveschanie po problemam upravleniya (VSPU–2019) 17–20 iyunya 2019 g. [XIII All-Russian Conference on Management Problems (VSPU–2019), June 17–20, 2019]. Moscow, IPU RAN Publ., 2019.
[37] Asharina I.V., Grishin V.Yu., Lobanov A.V., Sirenko V.G. Setetsentricheskoe upravlenie orbitalnoy gruppirovkoy avtomaticheskikh kosmicheskikh apparatov [Network-centric control of the orbital constellation of automatic spacecraft]. In: Tezisy dokladov IV Vserossiyskoy nauchno-tekhnicheskoy konferentsii “Sistemy upravleniya bespilotnymi kosmicheskimi i atmosfernymi letatelnymi apparatami”. Moskva, MOKB “Mars”, 31 oktyabrya — 2 noyabrya 2017 [Abstracts of the IV All-Russian Scientific and Technical Conference “Control Systems for Unmanned Space and Atmospheric Aerial Vehicles. Moscow, MOKB “Mars”, October 31 — November 2, 2017]. Moscow, 2017, pp. 9–10.
[38] Asharina I.V., Lobanov A.V. Rekonfiguratsiya sistem setetsentricheskogo upravleniya gruppirovkoy avtomaticheskikh kosmicheskikh apparatov [Reconfiguration of network-centric control systems for a group of automatic spacecraft]. In: Innovatsionnye, informatsionnye i kommunikatsionnye tekhnologii: sbornik trudov XIV Mezhdunarodnoy nauchno-prakticheskoy konferentsii INFO-2017 [Innovative, information and communication technologies: Proceedings of the XIV International Scientific and Practical Conference INFO-2017]. S.U. Uvaysova, ed. Moscow, Assotsiatsiya Vypusknikov i Sotrudnikov VVIA im. Prof. Zhukovskogo Publ., 2017, pp. 332–334. ISSN 2500-1248.
[39] Asharina I.V. Metod postroyeniya otkazoustoychivogo raspredelennogo algoritma SVIS v setetsentricheskikh informatsionno-upravlyayuschikh sistemakh [A method for constructing a fault-tolerant distributed algorithm SVIS in the network-centric information and control systems]. In: Materialy X Vserossiyskoy nauchno-prakticheskoy konferentsii “Nauchnye chteniya po aviatsii, posvyaschennye pamyati N.E. Zhukovskogo”, Moskva, 17–18 aprelya 2014 g. Sbornik dokladov [Materials of the X All-Russian scientific and technical conference “Scientific readings on aviation dedicated to the memory of N.E. Zhukovsky”, Moscow, April 17–18, 2014. Collection of reports]. Moscow, Akademy named after N.E. Zhukovsky Publ., pp. 135–138. ISBN 978-5-903111-67-1.
[40] Stepanov V.V. Perspektiva razvitiya gidrometeorologicheskogo obespecheniya s pomoschyu mnogotselevoy kosmicheskoy sistemy “Arktika” [Perspectives of development of hydrometeorological services by means of multi-purpose space system «ARCTIC»]. Vestnik “NPO imeni S.A. Lavochkina” — Bulletin of Lavochkin Association, 2016, no. 34/4 (October-December), pp. 55–60.
[41] Ganswind I.N. Malye kosmicheskie apparaty — novoe napravlenii kosmicheskoy deyatelnosti [Small spacecraft — new direction in space activities]. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal — International Research Journal, 2018, no. 12 (78). Part 2, pp. 84–91 (ISSN 2303-9868 PRINT, ISSN 2227-6017 ONLINE, Yekaterinburg).
[42] Asharina I.V., Lobanov A.V. Postroenie algoritmov sistemnogo vzaimnogo informatsionnogo soglasovaniya v sistemakh upravleniya gruppirovkami KA DZZ i sokraschenie ikh vremennoy izbytochnosti [Construction of algorithms for systemic mutual information coordination in remote sensing satellite constellation control systems and reduction of their temporal redundancy]. In: Spetsialnyi vypusk zhurnala “Voprosy elektromekhaniki. Trudy VNIIEM” — Special issue of “Electromechanical Matters. VNIIEM Studies”. Moscow, AO “Korporatsiya “VNIIEM” Publ., 2017, pp. 45–54.