Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Evolution of the radar research interplanetary missions on the Solar System planets taking into account development of the spacecraft onboard radar systems

Published: 23.05.2023

Authors: Paneeva A.P., Golov N.A.

Published in issue: #5(137)/2023

DOI: 10.18698/2308-6033-2023-5-2276

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper gives a detailed retrospective review of radio studies of the Solar system planets. The history of missions and the evolution of the spacecraft designed for radar research are considered. It presents analysis of the options in constructing the existing spacecraft radar facilities for interplanetary research. On the basis of this analysis, the appearance of a new generation of radar equipment for interplanetary research missions is proposed. Principles of construction and technical solutions for creation of the onboard radar equipment for the promising research spacecraft were determined. Promising missions of the Venus radar survey were analyzed, and approaches to construction of the spacecraft radar equipment based on the advanced technical solutions were proposed.


References
[1] Marov M.Ya., Huntress W.T. Soviet robots in the Solar system. Technologies and discoveries. Springer Praxis Books, 2011 [In Russ.: Marov M.Ya., Khantress U.T. Sovetskie roboty v Solnechnoy sisteme. Tekhnologii i otkrytiya. 2nd ed., rev. and enl. Moscow, Fizmalit Publ., 2017, 612 p., ISBN 928-5-9221-1741-8].
[2] Golov N.A., Usachev V.A., Koryanov V.V., Toporkov A.G. Perspektivnye tekhnologii sozdaniya kosmicheskogo kompleksa radiolokatsionnogo zondirovaniya Zemli na baze malykh kosmicheskikh apparatov i raket-nositeley legkogo klassa [Promising technical solutions for the space complex of the Earth’s radar sensing based on small spacecraft and light-class launch vehicles]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2019, iss. 5 (89), p. 9. https://doi.org/10.18698/2308-6033-2019-5-1881. EDN WBNBCT.
[3] Kasaba Y., Bougeret J.-L., Blomberg L.G., Kojima H. The plasma wave investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planetary and Space Science, January 2010, vol. 58(1–2), pp. 238–278. https://doi.org/10.1016/J.pss.2008.07.017
[4] Kolosov M.A., Yakovlev O.I. Resultaty radioprosvechevaniya neytralnoy atmosfery Venery i bistaticheskoy lokatsii ee poverkhnosti pri pomoschi sputnikov “Venera–9, 10” [Results of radio sounding of the neutral atmosphere of Venus and bistatic radar study of its surface with the aid of the satellites “Venera–9, 10”]. UFN – Physics Uspekhi, 1977, vol. 123, no. 4, pp. 697–698.
[5] Razvitie sistem i metodov dvukhpositsionnogo zondirovaniya atmosfer, poverkhnostey, grunta Venery, planet i ikh sputnikov, s pomoschyu bortovykh i nazemnykh radiosredstv, a takzhe moschnykh istochnikov kilometrovogo i dekametrovogo radioizlucheniya (Solntse, Zemlya, Yupiter, Saturn i dr.) [Development of systems and methods of two-position sounding of atmospheres, surfaces, soil of Venus, planets and their satellites, using airborne and ground-based radio equipment, as well as powerful sources of kilometer and decameter radio emission (Sun, Earth, Jupiter, Saturn, etc.]. Otchet o NIR (zaklyuchitelnyi) [Research report (final)]. No. GR 01201268739. V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (Fryazino Branch). A.G. Pavelyev, works supervisor. Fryazino, 2015, 32 p. Available at: http://cplire.ru/rus/reports/2014/0030-2014-0090.pdf (accessed: February 23, 2023).
[6] Häusler B., Pätzold M., Tyler G.L., Simpson R.A. Radio science investigations by VeRa onboard the Venus Express spacecraft. Planetary and Space Science, 2006, vol. 54 (13–14), pp. 1315–1335. https://doi.org/10.1016/j.pss.2006.04.032
[7] Nigar Shaji. Venus orbiter mission to study surface, atmosphere and plasma environment, 2019. Available at: https://www.lpi.usra.edu/vexag/meetings/archive/vexag-17/presentations/Nigar.pdf (accessed February 23, 2023).
[8] Shukrayaan-1: News and Updates. Strategic Front Forum. Available at: https://www.strategicfront.org/forums/threads/shukrayaan-1-news-and-updates.3622/ (accessed February 15, 2023).
[9] Hensl S., Smrekar S., Shaffer S., Paller M. VISAR: A Next Generation Inteferometric Radar for Venus Exploration. California Institute of Technology, Venus Lab and Technology Workshop at Houston, TX, September 2015. https://doi.org/10.1109/APSAR.2015.7306225
[10] Prorabotka predvaritelnoy programmy eksperimentov na orbitalnom, spuskaemom-posadochnom apparatakh i subsputnile proekta “Venera-D”. Itogovyi nauchno-tekhnicheskiy otchet o NIR “Venera-D” [Elaboration of the preliminary program of experiments on the orbital, descent-landing vehicles and subsatellite of the Venera-D project. Final scientific and technical report on the “Venera-D” R&D]. No. GR F 40946. Federal State Budgetary Institution of Science Space Research Institute of the Russian Academy of Sciences (SRI RAS). Moscow, SRI RAS Publ., 2012, 220 p. Available at: http://venera-d.cosmos.ru/uploads/media/Venera-D-2012.pdf (accessed February 23, 2023).
[11] Zasova L., Gregg T., Burdanov A., Economou T. Venera-D: expanding our horizon of terrestrial Planet climate and geology through the comprehensive exploration of Venus. EPSC Abstracts, 2019, vol. 13, EPSC-DPS2019-1938-1.
[12] Ghail R.C., Wilson F., Widemann T. EnVision M5 Venus Orbiter Proposal: Opportunities and Challenges. American Astronomical Society, DPS meeting #48, vol. 48, 01.10.2016.
[13] Ghail R.C., Wilson F., Widemann T. VenSAR, the Revolutionary Radar for the EnVision Mission to Venus. In: 48th Lunar and Planetary Science Conference, held 20–24 March 2017, at The Woodlands, Texas, 48, 2805.
[14] Krupenio N.N. Radiofizicheskie issledovaniya Luny i planet [Radiophysical studies of the Moon and planets]. Moscow, Znanie Publ., 1976, 64 p.
[15] Bin Zhou, Shaoxiang Shen, Wei Lu, Qing Liu. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth and Planetary Physics, July 2020, vol. 4(4), pp. 1–10. https://doi.org/10.26464/epp2020054
[16] Witasse O., the JUICE Teams: JUICE (Jupiter Icy Moon Explorer): A European mission to explore the emergence of habitable worlds around gas giants. In: Europlanet Science Congress 2020, online, 21 September–9 Oct 2020. EPSC2020-76. https://doi.org/10.5194/epsc2020-76
[17] RADAR. Cassini Orbiter. NASA. Available at: https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-detection-and-ranging/radar-technical-write-up/ (accessed February 15, 2023).
[18] Bratchikov A.N., Vasin V.I., Vasilenko O.O., et al. Aktivnye fazirovannye antennye reshetki [Active phased array antennas]. D.I. Voskresenskiy, A.N Kanaschenkov, eds. Moscow, Radiotekhnika Publ., 2004, 488 p.
[19] Golov N.A., Savchenko V.P., Usachev V.A. Radiofotonika v perspektivnykh radiolokatsionnykh sistemakh [Radiophotonics in perspective radar systems]. Radiotekhnika — Radioengineering, 2022, vol. 86, no. 8, pp. 132–145. https://doi.org/10.18127/j20700784-202012-02. EDN SSROUT.