Development of the algorithm of the orbital space telescope orientation and stabilization system operation with the malfunctioning controls
Authors: Bogatyreva S.M., Ilukhin S.N., Toporkov A.G.
Published in issue: #9(129)/2022
DOI: 10.18698/2308-6033-2022-9-2214
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
Orbital space telescope is a complex and expensive system. Electro-flywheel systems are used on such spacecraft as the orientation and stabilization system actuators making it possible to ensure the required accuracy of pointing an orbiting space telescope to a given region in the outer space. This paper considers the situation of failure of one of the flywheels on a spacecraft of the Hubble Space Telescope type. An algorithm for the orientation and stabilization system operation in such emergency was developed making it possible to ensure rotation of the spacecraft by a given angle with the remaining three controls functioning and without reducing the telescope pointing accuracy. A spacecraft model was created in the Simulink (MATLAB) dynamic simulation environment to develop this algorithm.
References
[1] Dougherty H., Rodoni C., Tompetrini K., Nakashima A. Space telescope pointing control. Automatic Control in Space, 1983, no. 13, pp. 15–24. DOI: 10.1016/S1474-6670(17)62184-0.
[2] Sayin E. Attitude and Motion Control of Hubble Space Telescope. Graduation project: Bachelor’s Degree, Istambul, 2020, 55 p. DOI: 10.13140/RG.2.2.34318.48960
[3] Golnaraghi F., Kuo B.C. Automatic Control Systems. Ninth Edition. Hoboken, Wiley, 2010, 945 p.
[4] Kirichenko D.V., Kleimenov V.V., Novikova E.V. Krupnogabaritnye opticheskie kosmicheskie teleskopy [Large-sized optical space telescopes]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyenie — Bulletin of Higher Educational Institutions. Instrumentation, 2017, no. 7, pp. 589–602. DOI: 10.17586/0021-3454-2017-60-7-589-602
[5] Avetyan E.E., Parko I.V. Zhiznennye tsikly teleskopa “Khabbl” [Life cycles of the Hubble telescope]. Interekspo Geo-Sibir — Interexpo Geo-Siberia, 2021, no. 1, pp. 3–5.
[6] Hasha M.D. Passive isolation/damping system for the Hubble space telescope reaction wheels: Conference Paper. The 21st Aerospace Mechanisms Symposium. Houston, NASA-Lyndon B. Johnson Space Center, 1987, pp. 211–226.
[7] Polyanin K.S., Gordienko V.S. Sistema oriyentatsii kosmicheskogo apparata na baze silovogo giroskopicheskogo kompleksa [Spacecraft orientation system based on the power gyroscopic system]. Nauka bez granits — Science without borders, 2019, no. 1 (29), pp. 16–24.
[8] Kuznetsov V.I., Kalashnikov S.D., Miklin D.V. Metod rascheta tochnostnykh kharakteristik sistemy avtonomnoy navigatsii i oriyentatsii kosmicheskikh apparatov [Method for calculating the accuracy characteristics of the autonomous navigation and orientation system in space vehicles]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyenie — Bulletin of Higher Educational Institutions. Instrumentation, 2020, no.1, pp. 35–45. DOI: 10.17586/0021-3454-2020-63-1-35-45
[9] Podchezertsev V.P., Qin Zihao. Modelirovanie kalibrovki dinamicheski nastraivayemykh giroskopov na odnoosnom girostabilizatore [Modeling the DTG calibration on a uniaxial gyrostabilizer]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, no. 10, pp. 1–14. DOI: 10.18698/2308-6033-2017-10-1682
[10] Iljukhin S.N., Klishin A.N., Chudinova O.N. Simulation of the Angular Stabilization System of the Artificial Earth Satellite in the MATLAB Simulink. AIP Conference Proceedings: MODELING IN ENGINEERING 2020. 2022, vol. 2383, Paper No. 030002. DOI: 10.1063/5.0075388