Parameters of the Earth’s rotation taken into account in high-precision simulation of the GLONASS satellites motion in the interests of civil consumers
Authors: Toporkov A.G., Koryanov V.V., Du Chongrui
Published in issue: #10(106)/2020
DOI: 10.18698/2308-6033-2020-10-2025
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The purpose of the study was to consider the parameters of the Earth’s rotation in solving the problem of high-precision simulation of the GLONASS navigation spacecraft motion. The paper introduces an algorithm for the operation of a program-algorithm complex for predicting the motion of the GLONASS satellite, taking into account the mathematical models recommended by the International Earth Rotation Service. The study presents the results of estimating the influence of the Earth’s pole motion, uneven rotation of the Earth, precession and nutation on the GLONASS satellite orbit in the form of errors for longitudinal range, vertical and lateral range. The values of the disturbing accelerations and the degree of their influence on the motion of the GLONASS satellite were estimated. The results of deviations of the orbital parameters are obtained: semi-major axis, eccentricity, inclination, longitude of the ascending node, the argument of the pericenter and the focal parameter at an interval of 30 days under the influence of the parameters of the Earth’s orientation.
References
[1] Lysenko L.N., Korianov V.V., Toporkov A.G. Vestnik MGTU. Seriya Mashinostroenie ― Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2015, no. 5, pp. 47‒61.
[2] Toporkov A.G. Analiz vliyaniya vozmuscheniy ot Luny, Solntsa i planet Solnechnoy sistemy na dvizhenie kosmicheskogo apparata GLONASS [Analysis of the influence of disturbances from the Moon, the Sun and planets of the solar system on the motion of the GLONASS spacecraft]. XLII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya”: Sbornik tezisov dokladov [XLII International Youth Scientific Conference "Gagarin Readings": Collection of abstracts]. In 4 vols, vol. 1. Moscow, MAI Publ., 2016, pp. 193-194.
[3] Ipatov A.V., Varganov M.E. Radio-interferometricheskiy kompleks «Kvazar-KVO» kak osnova koordinatno-vremennogo obespecheniya i fundamentalnoy podderzhki sistemy GLONASS [Radio-interferometric complex “Kvazar-KVO” as the basis of coordinate-time support and fundamental support of the GLONASS system]. Available at: http://mwelectronics.ru/2012/Plenary/U06_A.V.%20Ipatov_Radiointerferometricheskiy%20kompleks%20Kvazar-KVO.pdf (accessed June 10, 2020).
[4] Ivashina A.V., Toporkov I.S., Gluzdov A.N., Kuleshov Yu.V., Sakhno I.V., Kosynkin A.I., Kozlov A.V. Trebovaniya Minoborony Rossii k fundamentalnomu segmentu GNSS GLONASS na period do 2030 g. [Requirements of the Russian Ministry of Defense for the GLONASS GNSS fundamental segment for the period until 2030]. Trudy Instituta prikladnoy astronomii RAN [Proceedings of the Institute of Applied Astronomy of the Russian Academy of Sciences]. St. Petersburg, IAA RAS Publ., 2019, no. 51, pp. 63‒72.
[5] Chinilina M.A., Pasynok S.L. Perekhod ot nebesnoy sistemy koordinat k zemnoy sisteme koordinat i obratno [Transition from the celestial coordinate system to the terrestrial coordinate system and vice versa]. Available at: http://pvz.vniiftri.ru/theory/OTD73_IERS_v1.pdf (accessed June 10, 2020).
[6] Pasynok S.L. Metody i sredstva opredeleniya parametrov vrashcheniya Zemli. Almanakh sovremennoy metrologii [Methods and tools for determining the parameters of the Earth’s rotation. Almanac of modern metrology]. Available at: http://pvz.vniiftri.ru/theory/StatyaSchool_v3.pdf (accessed June 10, 2020).
[7] The International Astronomical Union. Available at: https://www.iau.org/ (accessed June 10, 2020).
[8] The International Union of Geodesy and Geophysics. Available at: http://www.iugg.org/ (accessed June 10, 2020).
[9] The International Association of Geodesy. Available at: http://www.iag-aig.org/ (accessed June 10, 2020).
[10] IERS Conventions (2010). International Earth Rotation and Reference Systems Service. Available at: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html;jsessionid=B63A1239D05DFF82EED55F3E7105C164.live2 (accessed June 10, 2020).
[11] Petit G., Luzum B., eds. IERS Conventions (2010). International Earth Rotation and Reference Systems Service Technical Note No. 36. Frankfurt, Germany, 2010, 180 p. Available at: https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.pdf?__blob=publicationFile&v=1 (accessed June 10, 2020).
[12] IERS Conventions Centre. IERS Conventions (2010) Packaged Content. Available at:https://iers-conventions.obspm.fr/conventions_versions.php#updated_target (accessed June 10, 2020).
[13] Subirana J. Sanz, Zornoza J.M.J., Hernandez-Pajares M. GNSS Data Processing. Vol. I: Fundamentals and Algorithms. ESA Communication Publ., 2013, 238 p.
[14] Zharov V.E. Sfericheskaya Astronomiya [Spherical Astronomy]. Fryazino, Vek 2 Publ., 2006, 480 p.
[15] International Earth Rotation and Reference Systems Service. Earth orientation center. Available at: http://hpiers.obspm.fr/eop-pc/index.php (accessed June 10, 2020).
[16] Kulikov K.A., Sidorenkov N.S. Planeta Zemlya [The Earth]. Moscow, Nauka Publ., 1977, 192 p.
[17] Sidorenkov N.S. Fizika nestabilnostey vrashcheniya Zemli [Physics of instabilities of the Earth’s rotation.]. Moscow, Fizmatlit Publ., 2002, 384 p.
[18] Groten E. The motion of the Earth. Landolt-Börnstein — Group V Geophysics, 1984, vol. 2A, pp. 9‒46.
[19] McCarthy D.D. IERS Technical Note 21 — IERS Conventions (1992). Central Bureau of IERS — Observatoire de Paris, 1996, 96 p. Available at: https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote21/tn21.pdf?__blob=publicationFile&v=1 (accessed June 10, 2020).
[20] Fateev V.F. Relyativistskaya metrologiya okolozemnogo prostranstva-vremeni [Relativistic metrology of near-earth space-time]. Mendeleevo, VNIIFTRI Publ., 2017, 439 p.
[21] Toporkov A.G., Koryanov V.V. Vliyanie parametrov vrashcheniya Zemli na prognozirovanie efemerid navigatsionnykh kosmicheskikh apparatov [The influence of the parameters of the Earth’s rotation on the forecasting of the ephemeris of navigation spacecraft.]. Tezisy dokladov nauchno-tekhnicheskoy konferentsii «Navigatsiya po gravitatsionnomu polyu Zemli i ee metrologicheskoe obespe-chenie» [Abstracts of the scientific and technical conference “Navigation in the Earth’s gravitational field and its metrological support”]. Mendeleevo, VNIIFTRI Publ., 2017, pp. 137–138.
[22] Toporkov A.G., Koryanov V.V. Prognozirovanie efemerid navigatsionnykh kosmicheskikh apparatov na osnove ucheta parametrov vrashcheniya Zemli [Prediction of the ephemeris of navigation spacecraft based on the parameters of the Earth’s rotation]. Materialy LI Nauchnykh chteniy pamyati K.E. Tsiolkovskogo [Proceedings of LI Scientific readings in memory of K.E. Tsiolkovsky]. Kaluga, Eydos Publ., 2016, pp. 153–154.
[23] Lysenko L.N., Koryanov V.V., Toporkov A.G. Engineering Journal: Science and Innovation, 2015, iss. 5. http://dx.doi.org/10.18698/2308-6033-2015-5-1398
[24] Almanakhi GLONASS i GPS. Informatsionno-analiticheskiy tsentr koordinatno-vremennogo i navigatsionnogo obespecheniya [GLONASS and GPS Almanacs. Information and Analytical Center for Coordinate Time and Navigation Support]. Available at: ftp://ftp.glonass-iac.ru/MCC/ALMANAC/ (accessed June 10, 2020).
[25] Vysokotochnaya efemeridno-vremennaya informatsiya dlya GLONASS i GPS. Informatsionno-analiticheskiy tsentr koordinatno-vremennogo i navigatsionnogo obespecheniya [High-precision ephemeris time information for GLONASS and GPS. Information and Analytical Center for Coordinate Time and Navigation Support]. Available at: ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/ (accessed June 10, 2020).
[26] Markov Yu.G., Mikhaylov M.V., Pochukaev V.N. Doklady akademii nauk (Proceedings of the Academy of Sciences), 2012, vol. 445, no. 1, pp. 37‒41.
[27] Markov Yu.G., Mikhaylov M.V., Pochukaev V.N. Doklady akademii nauk (Proceedings of the Academy of Sciences), 2014, vol. 457, no. 2, pp. 170‒174.