Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Techniques of testing algorithms for controlling spacecraft angular motion

Published: 10.06.2020

Authors: Merkuryev S.A.

Published in issue: #6(102)/2020

DOI: 10.18698/2308-6033-2020-6-1990

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper considers the technique of the initial developing algorithms for controlling the angular motion of an automatic spacecraft as a solid body. The mathematical model of the control object is given by the Euler’s dynamic equations and kinematic equations written using the Rodrig — Hamilton parameters. The technique has a simple form and is intended for control algorithm rough testing. Its structure allows adding complexity in the initial model of the system by adding models of onboard devices and external effects. The efficiency of the method was tested on the example of working out an algorithm with a dead zone for the solar-pointing control mode of an automatic spacecraft. In this mode, a solar sensor was used as a measuring device, and flywheel engines were used as executive bodies. The results of simulation in the MathWorks MATLAB environment are presented.


References
[1] Mikrin E.A. Bortovye kompleksy upravleniya kosmicheskimi apparatami i proektirovanie ikh programmnogo obespecheniya [Onboard spacecraft control systems and their software design]. Moscow, BMSTU Publ., 2003, 336 p.
[2] Zadorozhnaya N.M., Kudryavtseva A.A. Upravleniye uglovoy oriyentatsiey kosmicheskogo apparata v usloviyakh otkaza giroskopicheskogo izmeritelya vektora uglovoy skorosti [Spacecraft attitude control in the case of failure of gyroscopic angular velocity sensor]. Materialy konferentsii “Upravleniye v aerokosmicheskikh sistemakh” (UAS—2018) [Proceedings of the conference "Control in aerospace systems" (UAS—2018)]. St. Petersburg, Kontsern «Tsentralnyy nauchno-issledovatelskiy institut «Elektropribor» Publ., 2018, pp. 199–207.
[3] Shamaev A.M., Ozersky M. D. Informatsionno-tekhnologicheskiy vestnik —Informacionno-technologicheskij vestnik, 2015, no. 2 (4), pp. 127–136.
[4] Efimov D.A., Sumarokov A.V., Timakov S.N. Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya — Journal of Computer and Systems Sciences International, 2012, no. 5, p. 119.
[5] Molodenkov A.V., Sapunkov Ya.G., Molodenkova T.V. Mekhatronika, Avtomatizatsiya, Upravlenie — Mechatronics, Automation, Control, 2016, no. 5, pp. 335–340.
[6] Raushenbakh B.V., Tokar E.N. Upravlenie orientatsiey kosmicheskikh apparatov [Spacecraft orientation control]. Moscow, Nauka Publ., 1974, 600 p.
[7] Branets V.N., Shmyglevsky I.P. Primenenie kvaternionov v zadachakh orientatsii tverdogo tela [Application of quaternions in problems of solid orientation]. Moscow, Nauka Publ., 1973, 320 p.
[8] Kulba V.V., Mikrin E.A., Pavlov B.V., Platonov V.N. Teoreticheskie osnovy proektirovaniya informatsionno-upravlyayushchikh sistem kosmicheskikh apparatov [Basic theory of designing spacecraft information and control systems]. Moscow, Nauka Publ., 2006, 579 p.
[9] Branets V.N., Shmyglevsky I.P. Vvedenie v teoriyu besplatformennykh inertsialnykh navigatsionnykh system [Introduction to the theory of strapdown inertial navigation systems]. Moscow, Nauka Publ., 1992, 280 p.
[10] Mikrin E.A., Sukhanov N.A., Platonov V.N., Orlovskiy I.V. Problemy upravleniya — Control Sciences, 2004, no. 3, pp. 62–66.
[11] Volyntsev A.A., Kazakov B.A., Shustov I.E. Vestnik MGTU im. N.E. Baumana. Seriya Priborostroenie — Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2015, no. 5 (104), pp. 136–151.