Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Optimal thrust control of the transfer vehicle during tether deployment after harpoon capture of space debris

Published: 11.05.2020

Authors: Sizov D.A., Aslanov V.S.

Published in issue: #5(101)/2020

DOI: 10.18698/2308-6033-2020-5-1983

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper considers the process of removing a passive object by an active spacecraft, consisting of three stages: harpooning the object, deploying the tether, and towing. The shock pulse from the harpoon is used to reduce the angular velocity of the object and transfer it to the towing state. An algorithm for determining the position of the capture point on the object surface is proposed. The equations of relative motion of the transfer vehicle at the stage of tether deployment are given in the dimensionless form, which allows studying the movement in any parameter space. The law of thrust control at the stage of cable deployment is proposed and optimal control parameters that ensure safe towing are determined. The limits of applicability of the considered control law are found taking into account the structural and strength limitations of the system. As an example of using the proposed approach, a numerical simulation of withdrawing the Ariane 4 rocket upper stage was performed.

[1] Kessler D.J., Johnson N.L., Liou J.C., Matney M. Advances in the Astronautical Sciences, 2010, vol. 137, no. 8, pp. 2010.
[2] Shan M., Guo J., Gill E. Progress in Aerospace Sciences, 2016, vol. 80, pp. 18–32. DOI: 10.1016/j.paerosci.2015.11.001
[3] Hakima H., Emami M.R. Acta Astronautica, 2018, vol. 144, pp. 225–243. DOI: 10.1016/j.actaastro.2017.12.036
[4] Mark C.P., Kamath S. Space Policy, 2019, vol. 47, pp. 194–206. DOI: 10.1016/j.spacepol.2018.12.005
[5] Bombardelli C., Pelaez J. Journal of Guidance, Control, and Dynamics, 2011, vol. 34, no. 3, pp. 916–920. DOI: 10.2514/1.51832
[6] Kawamoto S., Makid T., Sasaki F., Okawa Y., Nishida S.I. Acta Astronautica, 2006, vol. 59, no. 1–5, pp. 139–148. DOI: 10.1016/j.actaastro.2006.02.035
[7] Nishida S.I., Kawamoto S., Okawa Y., Terui F., Kitamura S. Acta Astronautica, 2009, vol. 65, no. 1–2, pp. 95–102. DOI: 10.2514/6.iac-06-b6.4.02
[8] Schaub H., Sternovsky Z. Advances in Space Research, 2014, vol. 53, no. 1, pp. 110–118. DOI: 10.1016/j.asr.2013.10.003
[9] Phipps C.R. Acta Astronautica, 2014, vol. 104, no. 1, pp. 243–255. DOI: 10.1016/j.actaastro.2014.08.007
[10] Scharring S., Lorbeer R.A., Eckel H.A. AIAA Journal, 2018, vol. 56, no. 6, pp. 2506–2508. DOI: 10.2514/1.j056718
[11] Kumar K., Ortiz Gómez N., Jankovic M., Romero Martín J.M., Topputo F., Walker S.J., Vasile M. Agora: Mission to demonstrate technologies to actively remove Ariane rocket bodies. Proceedings of the 66th International Astronautical Congress, Jerusalem, Israel, 12–16 October 2015. Paris, International Astronautical Federation, 2015, рр. 1–16.
[12] Qi R., Misra A.K., Zuo Z. Journal of Guidance, Control, and Dynamics, 2016, vol. 40, no. 3, pp. 722–730. DOI: 10.2514/1.g000699
[13] Aslanov V.S. Journal of Guidance, Control, and Dynamics, 2015, vol. 39, no. 10, pp. 2399–2405. DOI: 10.2514/1.g001460
[14] Aslanov V.S., Yudintsev V.V. Journal of Guidance, Control, and Dynamics, 2019, vol. 42, no. 7, pp. 1630–1637.
[15] Jasper L., Schaub H. Acta Astronautica, 2014, vol. 96, no. 1, pp. 128–137. DOI: 10.1016/j.actaastro.2013.11.005
[16] Cartmell M.P., McKenzie D.J. Progress in Aerospace Sciences, 2008, vol. 44, no. 1, pp. 1–21.
[17] Chen Y., Huang R., Ren X., He L., He Y. History of the tether concept and tether missions: a review. ISRN astronomy and astrophysics, 2013, vol. 2013, pp. 1–7. DOI: 10.1155/2013/502973
[18] Forshaw J.L., Aglietti G.S., Salmon T., Retat I., Roe M., Burgess C., Chaumette F. Acta Astronautica, 2017, vol. 138, pp. 326–342. DOI: 10.1016/j.actaastro.2017.06.003
[19] Dudziak R., Tuttle S., Barraclough S. Advances in Space Research, 2015, vol. 56, no. 3, pp. 509–527. DOI: 10.1016/j.asr.2015.04.012
[20] Aglietti G.S., Taylor B., Fellowes S., Salmon T., Retat I., Hal A., Vinkoff N. Acta Astronautica, 2019, vol. 168, pp. 310–322 DOI: 10.1016/j.actaastro.2019.09.001
[21] Kang J., Zhu Z.H. Aerospace Science and Technology, 2019, vol. 94, pp. 105394–105396. DOI: 10.1016/j.ast.2019.105394
[22] Ortiz Gómez N., Walker S.J.I. Acta Astronautica, 2015, vol. 114, pp. 34–53. DOI: 10.1016/j.actaastro.2015.04.012
[23] Kumar R., Sedwick R.J. Journal of Spacecraft and Rockets, 2015, vol. 52, no. 4, pp. 1129–1134. DOI: 10.2514/1.a33183
[24] Wiggins L.E. AIAA Journal, 1964, vol. 2, no. 4, pp. 770–771.
[25] Kluever C.A. Space Flight Dynamics. John Wiley & Sons Publ., 2018, 584 p.