Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

Ballistic design of missions involving the delivery of Lunar soil to the Earth

Published: 11.03.2020

Authors: Gordienko E.S., Simonov A.V., Khudorozhkov P.A.

Published in issue: #3(99)/2020

DOI: 10.18698/2308-6033-2020-3-1967

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The paper discusses the design of a mission for delivering lunar soil to the Earth. The analysis of its main stages is carried out. These stages include possible flight pattern selection, analysis of the flight from the Earth to the circular orbit of the Moon artificial satellite, determination of trajectories of removal from lunar surface into the reference orbit, the search for return paths that depart from the Moon and fall into a given area on the Earth’s surface. A variant of determining the initial approximation for the method of return paths constructing is proposed. It is based on solving a two-parameter boundary value problem in the central field of the Earth. Varying the duration of the flight from the Moon to the Earth and the time of the spacecraft approach to the Earth, pointing return trajectory into vicinity of the polygon P is achieved for a given perigee radius. The article presents the main characteristics of the mission obtained using this technique.

[1] Solovyev V.A., Lysenko L.N., Lubinsky V.E. Upravlenie kosmicheskimi poletami [Control of space flights]. Moscow, BMSTU Publ., 2009, 446 p.
[2] Egorov V.A., Gusev L.I. Dinamika pereletov mezhdu Zemley i Lunoy [Dynamics of flights between the Earth and the Moon]. Moscow, Nauka Publ., 1980, 543 p.
[3] Okhotsimsky D.E., Sikharulidze, Yu.G. Osnovy mekhaniki kosmicheskogo poleta [Fundamentals of space flight mechanics]. Moscow, Nauka Publ., 1990, 448 p.
[4] Ohotsimsky D.E., Eneev D.E. Uspehi fizicheskih nauk – Advances of physical science, 1957, vol. 63, no. 1a, pp. 33–55.
[5] Ivashkin V.V. Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet [Optimization of space maneuvers with restrictions on distances to planets]. Moscow, Nauka Publ., 1975, 392 p.
[6] Ivashkin V.V., Petukhov V.G. Traektorii pereleta s maloy tyagoy mezhdy orbitami sputnikov Zemli i Luny pri ispolzovanii orbity zakhvata Lunoy [Low-thrust flightpath between the orbits of satellites of Earth and Moon using the orbit of capture by the Moon]. Preprints of the Keldysh Institute of applied mathematics of the Russian Academy of Sciences, no. 81, 2008, pp. 1–32. Available at: (accessed January 11, 2020).
[7] Narimanov G.S., Tikhonravov M.K., eds. Osnovy teorii poleta kosmicheskikh apparatov [Fundamentals of the theory of spacecraft flight]. Moscow, Mashinostroenie Publ., 1972, 608 p.
[8] Bychkov A.D., Ivashkin V.V. Kosmonavtika i raketostroenye — Cosmonautics and Rocket Engineering, 2014, no. 1, pp. 68–76.
[9] Gordienko. E.S., Ivashkin V.V., Lu V. Kosmonavtika i raketostroenye — Cosmonautics and Rocket Engineering, 2015, no. 1, pp. 37–47.
[10] Gordienko E.S., Khudorozhkov P.A. Vestnik NPO imeni S.A. Lavochkina, 2016, no.1, pp. 15–25.
[11] Gordienko E.S., Khudorozhkov P.A., Simonov A.V. Vestnik NPO imeni S.A. Lavochkina, 2019, no. 3, pp. 20–27.
[12] Pavlak T.A., Howell K.C. Acta Astronautica, 2012, no. 81, pp. 456–465.
[13] Gordienko E.S., Ivashkin V.V. Kosmicheskie issledovaniya — Cosmic Research, 2017, vol. 55, no. 3, pp. 207–217.
[14] Gordienko E.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2017, iss. 9. DOI: 10.18698/2308-6033-2017-9-1667
[15] Tuchin A. G. Opredelenie parametrov dvizheniya kosmicheskogo apparata po rezultatam izmereniy pri nalichii shuma v dinamicheskoy sisteme [Determining parameters of spacecraft motion by results of measurements provided a noise is in a dynamic system]. Preprints of the Keldysh Institute of applied mathematics of the Russian Academy of Sciences, no. 2, 2004, pp. 1–32. Available at: (accessed January 11, 2020).
[16] Standish E.M. JPL Planetary and Lunar Ephemerides, DE405/LE405. 1998. JPL IOM 312.F-98-048.