The content and structure of tasks of diagnosing anomalies in spacecraft onboard systems operation
Authors: Abanin O.I., Soloviev S.V.
Published in issue: #6(90)/2019
DOI: 10.18698/2308-6033-2019-6-1890
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The paper substantiates the possibility of the automated solution to the problems of detecting anomalies in the operation of onboard systems of a spacecraft, identifying and predicting deviations in the process of spacecraft operation based on changes in the values of telemetric parameters. The study provides insight into the content and structure of the tasks of diagnosing anomalies in the operation of onboard spacecraft systems, and analyzes the current state of the spacecraft flight control process. Within the research, we point out the drawbacks of the existing methods for monitoring telemetric information on the state of a spacecraft, and introduce possible solutions. We describe the principle of solving these problems of analyzing telemetric information using the wavelet transform method, and propose a method for automating the analysis process based on the special mathematical apparatus being developed. The paper gives a brief description of the mathematical transformations on which the proposed method for diagnosing anomalies in the operation of onboard systems is based
References
[1] Frawley W., Piatetsky-Shapiro G., Matheus C. Knowledge Discovery in Databases: An Overview. AI Magazine, 1992, pp. 213–228.
[2] Barsegyan A.A., Kupriyanov M.S., Kholod I.I. Analiz dannykh i protsessov [Data and process analysis]. 3rd ed. St. Petersburg, BHV-Peterburg Publ., 2009.
[3] Sakrutina E.A., Bakhtadze N.N. Identifikatsiya sistem na osnove veyvlet-analiza [Identification of systems based on wavelet analysis]. Trudy XII Vserossiyskogo soveshchaniya po problemam upravleniya (Moscow, VSPU-2014) [Works of XII All-Russian conference on the problems of control-2014]. Moscow, ICS RAS, 2014, pp. 2868–2889.
[4] Dobeshi I. Desyat lektsiy po veyvletam [Ten lectures on wavelets]. Izhevsk, RKhD Publ., 2001, 464 p.
[5] Astafeva. N.M. Uspekhi fizicheskikh nauk — Physics-Uspekhi (Advances in Physical Sciences), 1996, vol. 166, no. 11, pp. 1145–1170.
[6] Dyakonov V.P. Veivlety. Ot teorii k praktike [Wavelets. From theory to practice]. Moscow, Solon-R Publ., 2002, 448 p.
[7] Kozinov I.A. Informatsionno-upravlyaiushchie sistemy — Information and Control Systems, 2015, no. 1, p. 4.
[8] Petukhov A.P. Vvedenie v teoriyu bazisov vspleskov [Introduction to wavelet theory]. St. Petersburg, SSTU Publ., 1999, 132 p.
[9] Dremin I.L., et al. Uspekhi fizicheskikh nauk — Physics-Uspekhi (Advances in Physical Sciences), 2001, vol. 171, no. 5, pp. 465–501.
[10] Konysheva V.Yu., Maksimov N.A., Sharonov A.V. Trudy MAI (Proceedings of MAI), 2017, no. 97. Available at: http://trudymai.ru/upload/iblock/911/Konysheva_Maksimov_SHaronov_rus.pdf
[11] Dyakonov V., Abramenkova I. MATLAB. Obrabotka signalov i izobrazheniy. Spetsialny spravochnik [MATLAB. Signal and image processing. Special Handbook]. St. Petersburg, Piter Publ., 2002, 608 p.
[12] Pereberin A.V. Vychislitelnye metody i programmirovanie — Numerical Methods and Programming, 2001, vol. 2, pp. 15–40.
[13] Vorobyev V.I., Gribunin V.G. Teoriya i praktika veyvlet-preobrazovaniya [Theory and practice of wavelet transform]. St. Petersburg, VUS Publ., 1999, 204 p.
[14] Mallat S. A wavelet tour of signal processing: the sparse way. 3rd ed. Academic Press, 1998 [In Russ.: Malla S. Veyvlety v obrabotke signalov. Moscow, Mir Publ., 2005, 671 p.].