Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский

SINS/SNS integration based on loosely coupled scheme using extended Kalman filter

Published: 26.04.2019

Authors: Al Bitar N., Gavrilov A.I.

Published in issue: #4(88)/2019

DOI: 10.18698/2308-6033-2019-4-1870

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article considers a problem of SINS/SNS integration based on loosely coupled integration scheme using extended Kalman filter. Full stochastic models of MEMS inertial sensor measurements were used. The performance of extended Kalman filter is evaluated using real measurements of MEMS-SINS and dual antenna SNS receiver. The results of estimating the drifts of gyroscopes and accelerometers are presented. The position accuracy of the system for different periods of SNS signal outages is also evaluated

[1] Salychev О.S. Inertial systems in navigation and geophysics. Moscow, Bauman MSTU Press, 1998, 352 p.
[2] Grewal M.S., Weill L.R., Andrews A.P. Global positioning systems, inertial navigation, and integration. 2nd ed. New York, John Wiley & Sons, 2007, 408 p.
[3] Matveev V. V., Raspopov V. Ya. Osnovy postroenia besplatformeniyh inercial’nyh navigacionnyh system. St. Petersburg, Concern CSRI Elektropribor, JSC, 2009, 278 p.
[4] Crassidis J.L., Junkins J.L. Optimal estimation of dynamic systems. 2nd ed. New York, CRC Рress, 2011, 749 p.
[5] Crassidis J.L. Sigma-point Kalman filtering for integrated GPS and inertial navigation. IEEE Transactions on Aerospace and Electronic Systems, 2006, vol. 42, no. 2, pp. 750–756.
[6] Ryu J.H., Gankhuyag G., Chong K.T. Navigation system heading and position accuracy improvement through GPS and INS data fusion. Journal of Sensors, 2016, vol. 2016, pp. 1–6.
[7] Jekeli Ch. Inertial navigation systems with geodetic applications. Berlin, Walter de Gruyter, 2001, 352 p.
[8] Quinchia A.G., Falco G., Falletti E., Dovis F., Ferrer C. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors, 2013, vol. 13, no. 8, pp. 9549–9588.
[9] Emekyantsev G.I., Stepanov A.P. Integrirovannyye inertsialno-sputnikovye sistemy orientatsii i navigatsii [Integrated inertial satellite orientation and navigation systems]. Peshekhonov V.G., ed. St. Petersburg, Concern CSRI Elektropribor, JSC, 2016, 394 p.
[10] Matveev V.V. Inertsialnye navigatsionnye sistemy [Inertial navigation systems]. Tula, Tula SU Publ., 2012, 199 p.
[11] Hou H., El-Sheimy N. Inertial sensors errors modeling using Allan variance. Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), 2003, pp. 2860–2867.
[12] SBG Systems, Ekinox INS. User Manual: EKINOXINSUM. Revision 1.2, 2014.
[13] Gonzalez R., Catania C.A., Dabove P., Taffernaberry J.C., Piras M. Model validation of an open-source framework for post-processing INS/GNSS systems. Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management. 2017, vol. 1, pp. 201–208.
[14] Hong S., Lee M.H., Chun H.H., Kwon S.H., Speyer J.L. Observability of error states in GPS/INS integration. IEEE Transactions on Vehicular Technology, 2005, vol. 54, no. 2, pp. 731–743.
[15] Tang Y., Wu Y., Wu M., Wu W., Hu X., Shen L. INS/GPS integration: Global observability analysis. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 3, pp. 1129–1142.