Features of the orbital motion control of geostationary satellites in the conditions of their collocation
Authors: Sukhoy Yu.G., Braginets V.F., Mescheryakov V.M.
Published in issue: #3(87)/2019
DOI: 10.18698/2308-6033-2019-3-1860
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The article describes the analysis of features of safe orbital motion control for two geostationary satellites in one orbital zone. Under the given assumptions and limitations, the methods of controlling the satellite orbit eccentricities and inclinations by means of corrections, ensuring the implementation of the I-E-collocation method, are investigated. The result of research is the development of rational strategies for controlling the orbit eccentricities and inclinations of two satellites. The strategy of controlling eccentricity is a modification of the sun pointing perigee strategy and is called the quasi-sun pointing perigee strategy. The strategy of controlling inclinations takes into account the evolution of the orbital inclinations under the influence of the gravitational potentials of the Sun and the Moon in certain periods of the year and at different positions of the Moon orbit line of nodes. The developed strategies provide for reducing the fuel cost for the orbital parameter corrections at collocation of two satellites since eccentricity corrections are partially combined with corrections of satellite hold in longitude, and inclination corrections are performed in the most rational direction opposite to the direction of inclination vector growth
References
[1] Braginets V.F., Sukhoy Yu.G., Vinogradov V.A., Fedonin S.V., Scherbakov A.V. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2016, no. 8 (93), pp. 98–109.
[2] Sukhoy Yu.G. Korrektsii orbit geostatsionarnykh sputnikov. V 3 chastyakh. Chast 1. Osobennosti upravlenia orbitalnym dvizheniem i vozmuschenia orbit geostatsionarnykh sputnikov [Correction of the geostationary satellite orbits. In 3 parts. Part 1. Features of orbital motion control and perturbations of geostationary satellite orbits]. Moscow, Sputnik+ Publ., 2011, 120 p.
[3] Sukhoy Yu.G., Bulynin Yu.L. Problemy bezopasnogo upravlenia sputnikami na geostatsionarnoy orbite [The problems of safe handling satellites in the geostationary orbit]. V sbornike statey: Arkhipov V.A., Bulynin Yu.L., Gafarov A.A., Golovko A.V. et al. Kosmicheskiy musor. V 2 knigakh. Kn. 2. Preduprezhdenie obrazovania kosmicheskogo musora. [Space debris. Collection of articles in 2 books. Book 2. Prevention of space debris formation]. Raikunov G.G., ed. Moscow, Fizmatlit Publ., 2014, pp. 49–67.
[4] Soop Е.M. Handbook of Geostationary Orbits. Space Technology Library, Kluwer Academic Publishers, 1994, 309 p.
[5] Sukhoy Yu.G. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2016, no. 6 (91), pp. 67–77.
[6] Belyaev N.M., Belik N.P. Uvarov E.I. Reaktivnye sistemy upravlenia kosmicheskikh letatelnykh apparatov [Spacecraft reactive control systems]. Moscow, Mashinostroenie Publ., 1979.
[7] Kvasnikov L.A., Latyshev L.A., Ponomarev-Stepnoi N.N., Sevruk D.D., Tikhonov V.B. Teoria i raschet energeticheskikh ustanovok kosmicheskikh letatelnykh apparatov [Theory and analysis of spacecraft power plants]. Moscow, MAI Publ., 2001, 480 p.
[8] Grishin S.D., Leskov L.V. Elektricheskie raketnye dvigateli kosmicheskikh apparatov [Spacecraft electric rocket engines]. Moscow, Mashinostroenie Publ., 1989.
[9] Gorshkov O.A. Novosti Kosmonavtiki — Cosmoworld, 1999, no. 7, рр. 56–58.
[10] Bulynin Yu.L., Afanasyev S.M., Ankudinov A.V., Yukseev V.A. Sposob avtonomnoy kollokatsii na geostatsionarnoy orbite [Mehod for autonomous collocation in a geostationary orbit]. Patent RF No. 2559371, 2015.
[11] Sukhoy Yu.G., Braginets V.F. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2018, issue 7. DOI: 10.18698/2308-6033-2018-7-1783