Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Techniques for automating the determination of the stabilization algorithm parameters of UAV with specified stability margins

Published: 06.02.2019

Authors: Plavnik G.G., Tochilova O.L., Loshkarev A.N.

Published in issue: #2(86)/2019

DOI: 10.18698/2308-6033-2019-2-1850

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article describes the techniques for determining the parameters of the unmanned aerial vehicles stabilization algorithms, which allows automating the process of choosing parameters with the given stability margin. The technique is based on the relationship between the values of the characteristic equation roots and the type of the transition function of the system under consideration. Assessment of stability margin and speed of the system is performed by the form of the transition curve for a typical input action. Using of the technique allows immediate determining the parameters of stabilization algorithms that provide the specified characteristics of transients. The problem of determining the parameters of the characteristic equation roots that allow realizing a given duration of the transient process of disturbance attack with a given accuracy and permissible overshoot is considered. An example of the technique application for analyzing a simplified model of the aircraft motion in a vertical plane is given. The obtained results are verified using the previously developed methodology for studying the stability of unmanned aerial vehicle motion based on the construction of their regions of stability


References
[1] Plavnik G.G., Loshkarev A.N., Tochilova О.L. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, issue 9. DOI: 10.18698/2308-6033-2016-9-1528
[2] Kornienko A.A., Plavnik G.G. Primenenie iskysstvennykh neyronnykh setey v sisteme upravlenia letatelnogo apparata [Using artificial neural networks in the control system of the aircraf]. Trudy sektsii 22 imeni akademika V.N. Chelomeya XLI Akademicheskikh chteniy po kosmonavtike [Proceedings of the section 22 named after academician V.N. Chelomey of XLI Academic readings in cosmonautics]. Reutov, JSC “MIC “NPO Mashinostroyenia”, 2017, no. 5, pp. 507–513.
[3] Zenchenko M.V., Plavnik G.G. Stabilizatsia uglovogo dvizhenia letatelnogo apparata na osnove identifikatsii kharakteristik letatelnogo apparata v protsesse poleta [Stabilization of the angular motion of the aircraft based on the identification of the aircraft characteristics during the flight]. Trudy sektsii 22 imeni akademika V.N. Chelomeya XL Akademicheskikh chteniy po kosmonavtike [Proceedings of the section 22 named after academician V.N. Chelomey of XL Academic readings in cosmonautics]. Reutov, JSC “MIC “NPO Mashinostroyenia”, 2016, no. 4, pp. 145–151.
[4] Malkin V.A. Sintez robastnogo kontura uglovoy stabilizatsii bespilotnogo letatelnogo apparata [Synthesis of the robust contour of the angle stabilization of an unmanned aerial vehicle]. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki [Reports of Belarusian State University of Informatics and Radioelectronics], 2012, no. 2 (64), pp. 5–10. Available at: https://doklady.bsuir.by/m/12_104571_1_71381.pdf (accessed December 11, 2018).
[5] Plavnik G.G., Loshkarev A.N., Tochilova О.L. Metodika issledovania ustoychivosti dvizhenia bespilotnykh letatelnykh apparatov [Techniques for studying the stability of motion of unmanned aerial vehicles]. Trudy sektsii 22 imeni akademika V.N. Chelomeya XXXVIII Akademicheskikh chteniy po kosmonavtike [Proceedings of the section 22 named after academician V.N. Chelomey of XXXVIII Academic readings in cosmonautics]. Reutov, JSC “MIC “NPO Mashinostroyenia”, 2014, no. 2, pp. 57–64.
[6] Vorobyeva V.N., Donovsky D.E. Vestnik Kontserna PVO “Almaz-Antey” (Bulletin of the “Almaz-Antey" Air Defense Concern), 2015, no. 2, pp. 69–73. Available at: http://www.almaz-antey.ru/upload/iblock/d57/d5773eb1a43e5a8a0ef 225e012e5c746.pdf (accessed December 11, 2018).
[7] Dobrolensky Yu.P., Ivanov V.I., Pospelov G.S. Avtomatika upravlyaemykh snaryadov [Automation of guided projectiles]. Moscow, Oborongiz Publ., 1963, 548 p.
[8] Antanevich, A.A., Ikuas, Yu.F., Lobaty, A.A. Vestnik BNTU — Bulletin of the Belarusian National Technical University, 2010, no. 5, pp. 37–40. Available at: https://rep.bntu.by/bitstream/handle/data/1420/37-40.pdf (accessed December 11, 2018).
[9] Cook R., Palacios-Nieto R., Goulart P.J. Robust Gust Alleviation and Stabilization of Very Flexible Aircraft. AIAA Journal, 2013, vol. 51, no. 2, pp. 330–340.
[10] Besekersky V.A., Popov E.P. Teoria system avtomaticheskogo upravlenia [Theory of automatic control systems]. St. Petersburg, Professia Publ., 2003, 752 p.