Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

The strategy for correcting the geostationary satellite orbit inclination, taking into account the long term inclination evolution under the gravitational potentials of the Sun and the Moon

Published: 27.06.2018

Authors: Sukhoy Yu.G., Braginets V.F.

Published in issue: #7(79)/2018

DOI: 10.18698/2308-6033-2018-7-1783

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article discusses the strategy for correcting the geostationary satellite orbit inclination for various satellite keeping zones and the periods of the motion cycle of the nodes of the Moon's orbit based on the analysis of solar-lunar gravitational perturbations of the geostationary satellite orbit inclination. The strategy provides for considering the long-period variations in the inclination arising under the gravitational potentials of the Sun and the Moon, depending on the size of the inclination keeping zone, allows choosing the most rational ways of the corrective action and its magnitude, taking into account possible deviations due to long-period and diurnal inclination fluctuations. Using the developed strategy for ballistic support of geostationary satellites control will allow ensuring geostationary satellite inclination keeping in the selected orbital position rationally and with a minimum number of firings


References
[1] Arkhipov V.A., Bulynin Yu.L., Gafarov A.A., Golovko A.V. et al. Problemy bezopasnogo upravleniya sputnikami na geostatsionarnoy orbite. Kosmicheskiy musor [The problems of safe handling satellites in the geostationary orbit. Space debris]. In: Kn. 2. Preduprezhdenie obrazovaniya kosmicheskogo musora [Book 2. Prevention of space debris formation]. Moscow, Fizmatlit Publ., 2014, pp. 49–67.
[2] Soop E.М. Introduction to geostationary orbits. Paris, European Space Agency (ESA), 1983, p. 75.
[3] Soop E.M. Handbook of Geostationary Orbits. Space Technology Library, Kluwer Academic Publishers, 1994, 309 p.
[4] Duboshina G.N., ed. Spravochnoe rukovodstvo po nebesnoy mekhanike i astrodinamike [Reference guide to celestial mechanics and astrodynamics]. Moscow, Nauka Publ., 1976, 864 p.
[5] Arnold K. Methoden der Satellitengeodäsie. Berlin, Akademie-Verlag Publ., 1970 [In Russ.: Arnold K. Metody sputnikovoy geodezii. Moscow, Nedra Publ., 1973, 224 p.].
[6] Sukhoy Yu.G. Korrektsiya orbit geostatsionarnykh sputnikov. V 3 chastyakh. Chast 1. Osobennosti upravleniya orbitalnym dvizheniem i vozmushcheniya orbit geostatsionarnykh sputnikov [Correction of the geostationary satellite orbits. In 3 parts. Part 1. Features of orbital motion control and perturbation of the geostationary satellite orbits]. Moscow, Sputnik+ Publ., 2011, 120 p.
[7] Baranov V.N., Boyko E.G., Krasnorylov I.I. et al. Kosmicheskaya geodeziya [Space geodesy]. Moscow, Nedra Publ., 1986, 409 p.
[8] Zubinsky V.I., Izotov A.A., Makarenko N.L., Mikisha A.M. Osnovy sputnikovoy geodezii [Basics of satellite geodesy]. Moscow, Nedra Publ., 1974, 320 p.
[9] Sukhoy Yu.G. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2016, no. 6 (91), pp. 67–77.
[10] Braginets V.F., Sukhoy Yu.G., Vinogradov V.A., Fedonin S.V., Shcherbakov A.V. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2016, no. 8 (93), pp. 98–109.