On-board computer efficiency evaluation of unmanned aerial vehicles (UAV) when implementing the targeting process
Authors: Ilukhin S.N., Klishin A.N.
Published in issue: #7(79)/2018
DOI: 10.18698/2308-6033-2018-7-1781
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The article considers the methods for estimating on-board digital computers performance, which are used in the modern unmanned aerial vehicles (UAV) control circuits, since the entire control system efficiency depends on the processor speed. The paper analyses various approaches to the on-board computers speed evaluation. Evaluation techniques, carried out with the MFLOPS processor, have become widespread, and they are of particular interest. According to these evaluation methods, we developed a set of recommendations to improve the control algorithms structure, to assess the opportunities for simplification without significantly reducing the control efficiency, and to determine the computational operations frequency in the algorithm. The article clearly illustrates the operation process by the example of the evaluation of the on-board computer performing the direct homing with functional anticipation program
References
[1] Lysenko L.N. Navedenie ballisticheskikh raket [Guidance of ballistic missiles]. Moscow, BMSTU Publ., 2016, 445 p.
[2] Krasilschikov M.N., Sebryakov G.G. Upravlenie i navedenie bespilotnykh manevrennykh letatelnykh apparatov na osnove sovremennykh informatsionnykh tekhnologiy [Control and guidance of unmanned maneuverable aircraft based on modern information technology]. Moscow, FIZMАTLIT Publ., 2003, 280p.
[3] Besekersky V.А., Izrantsev V.V. Sistemy avtomaticheskogo upravleniya s mikro EVM [Automated control systems with a microcomputer]. Moscow, Nauka Publ., 1987, 320 p.
[4] Solunin V.L., Gursky B.G., Lyushanov M.А., Spirin V.L. et al. Osnovy teorii sistem upravleniya vysokotochnykh raketnykh kompleksov sukhoputnykh voysk [Fundamentals of the theory of control systems for high-precision missile systems of the Ground Forces]. Moscow, BMSTU Publ., 2001, 328 p.
[5] Ganin S.M., Karpenko А.V., Kolnogorov V.V., Petrov G.F. Bespilotnye letatelnye apparaty [Unmanned aerial vehicles]. St. Petersburg, Nevsky Bastion Publ., 1999, 163 p.
[6] Makarov D.А., Rozenberg M.Ya., Shilnikov А.B. Vestnik YUUrGU — Bulletin of the South Ural State University, 2009, no. 37 (170), pp. 85–92.
[7] Kutomanov А.Yu, Kudryavtsev S.I. Kosmonavtika i raketostroenie — Сosmo- nautics and Rocket Engineering, 2015, no 4 (83), pp. 142–147.
[8] Yanchik А.G., Kvashin А.G. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy — Rocket Space Device Engineering and Information Systems, 2014, vol. 1 (1), pp. 47–54.
[9] Korolev L.N. Аrkhitektura elektronnykh vychislitelnykh mashin [Architecture of electronic computers]. Moscow, Nauchny Mir Publ., 2005, 272 p.
[10] Volkov E.А. Chislennye metody — Numerical methods. Electronic Library System Lan, no. 5. St. Petersburg, 2008, 256 p.
[11] Аlabova N.P., Bryukhanov N.А., Dyadkin А.А., et al. Kosmicheskaya tekhnika i tekhnologii — Space Engineering and Technology, 2014, no. 3, pp. 14–21.
[12] Voevodin V.V., Voevodin Vl.V. Parallelnye vychisleniya [Parallel computing]. BHV-Peterburg Publ., 2002, 608 p.
[13] Zubov N.E., Mikrin E.А., Ryabchenko V.N., Proletarsky А.V. Аviatsionnaya tekhnika. Izvestiya vuzov — Russian Aeronautics. Izvestiya vysshikh uchebnykh zavedenii, 2015, no. 3, pp. 14–20.
[14] Shnitman V. Sovremennye vysokoproizvoditelnye kompyutery [Modern high-performance computers]. Information-analytical materials. Center for Information Technologies Publ., 1996, 252 p.
[15] Kazakov G. V. Metod otsenki pokazatelya nadezhnosti spetsialnogo programmnogo obespecheniya komplekcov sredstv podgotovki dannykh po rezultatam ispytaniy na etape razrabotki [Method for estimating the reliability index of special software for data-preparation facilities based on test results at the development stage]. In: Trudy Moskovskogo instiyuta teplotekhniki [Proceedings of Moscow Institute of Heat Engineering]. Moscow, MIT Publ., 2015, vol. 15, part 1, pp. 102–113.
[16] Lejen D., Hall J. MSDN Magazine, 2007, no. 10. Available at: https://msdn.microsoft.com/ en-us/magazine/ee310108.aspx
[17] Galaktionov V.S., Znak V.А., Znak N.E., Kazakov G.V., Kotyashev N.N., Sido- rov А.V. Strategicheskaya stabilnost — Strategic Studies, 2009, no 3, pp. 59–66.
[18] Guk M. Protsessory Intel ot 8086 do Pentium II [Intel processors from 8086 to Pentium II]. St. Petersburg, Piter Publ., 1997, 224 p.
[19] Grabin V.V., Klishin А.N. Oboronnaya tekhnika – Science and Education, BMSTU Publ., 2003, no. 1–2, pp. 67–71.
[20] Klishin А.N. Issledovanie printsipialnoy vozmozhnosti sozdaniya algoritmov navedeniya letatelnykh apparatov na podvizhnye tseli metodom pryamogo samonavedeniya s funktsionalnym uprezhdeniem, dostatochno priblizhennym k metodu proportsionalnogo sblizheniya [The study of the principle possibility of creating algorithms for the mobile target guidance of flying vehicles by the method of direct homing with functional anticipation, sufficiently approximated to the method of proportional approach]. XXVI Gagarinskie chteniya. Tez. doklada [XXVI Gagarin Science Conference. Theses.]. Moscow, Moscow Aviation Institute, 2000, p. 77.
[21] Klishin А.N. Sposob vosstanovleniya postoyannykh parametrov funktsio-nalnogo uprezhdeniya po kraevym znacheniyam na bortu letatelnogo apparata [The method of restoring the constant parameters of the functional anticipation along the extreme values on board the aircraft]. XXVI Gagarinskie chteniya. Tez. doklada [XXVI Gagarin Science Conference. Theses.]. Moscow, Moscow Aviation Institute, 2003, p. 98.
[22] Klishin А.N., Shvyrkina O.S. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2016, iss 9. DOI: 10.18698/2308-6033-2016-9-1534