Investigating precision capabilities of a system of terminal guidance algorithms for prospective manned spacecraft during final descent phase in the Earth’s atmosphere
Authors: Kudryavtsev S.I.
Published in issue: #3(51)/2016
DOI: 10.18698/2308-6033-2016-3-1473
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control
The article deals with the problem of ensuring high-precision landing during gliding reentry of a prospective manned spacecraft reentry capsule. The importance of this problem stems from the necessity of transferring landing sites from the territory of Kazakhstan to the territory of Russia. To solve this problem, we intend to use a combined reentry guidance system performing precise terminal guidance based on navigation data from a satellite system during the final phase of capsule descent. A brief description of the system of terminal guidance algorithms designed is given. Issues of research methodology for investigations performed using a modified software package for reentry flight dynamics support of the "Soyuz TMA-M"-type spacecraft are considered. Results of statistical simulation of a combined guidance system in operation, including simulation of both autonomous reentry control before radio reacquisition and final terminal guidance, are presented. The study shows that the error of delivering the capsule to the target point does not exceed the desired value of 1 km.
References
[1] Okhotsimskiy D.E., Golubev Yu.F., Sikharulidze Yu.G. Algoritmy upravleniya kosmicheskim apparatom pri vkhode v atmosferu [Guidance algorithms for spacecraft during atmospheric reentry]. Moscow, Nauka Publ., 1975.
[2] Sikharulidze Yu.G. Ballistika letatelnykh apparatov [Aircraft ballistics]. Moscow, Nauka Publ., 1982.
[3] Yaroshevskiy V.A. Vkhod v atmosferu kosmicheskikh letatelnykh apparatov [Atmospheric reentry of spacecraft]. Moscow, Nauka Publ., 1988.
[4] Andreevskiy V.V. Dinamika spuska kosmicheskikh apparatov na Zemlyu [Dynamics of spacecraft deorbiting onto the Earth]. Moscow, Mashinostroenie Publ., 1970.
[5] Kudryavtsev S.I. Kosmonavtika i raketostroenie - Cosmonautics and Rocket Engineering, 2015, no. 1 (80), pp. 5-13.
[6] Berenov N.K., Branets V.N., Evdokimov S.N., Klimanov S.I., Komarova L.I., Mikrin E.A., Ryzhkov V.S., Samitov R.M. Giroskopiya i navigatsiya - Gyroscopes and Navigation, 2004, no. 3 (46), pp. 5-13.
[7] Bezmenov A.E., Aleksashenko V.A. Radiofizicheskie i gazodinamicheskie problemy prokhozhdeniya atmosfery [Radiophysics and gas dynamics issues of atmospheric transit]. Moscow, Mashinostroenie Publ., 1982.
[8] Ivanov N.M., Kudryavtsev S.I. Kosmicheskie issledovaniya - Space Research, 1988, vol. XXVI, no. 4.
[9] Kudryavtsev S.I. Osobennosti tochnogo navedeniya pilotiruemykh kosmicheskikh apparatov na konechnom uchastke ikh spuska [Specifics of precise guidance of manned spacecraft during the final descent phase]. Sb. RKT [Rocket and Space Technology Miscellany], TsNIImash Publ., 1990, ser. IX, no. 1. Available at: http://tsniimash.ru/publications
[10] Kudryavtsev S.I. Identifikatsiya parametrov modeli spuskaemogo apparata pri radioupravlenii v atmosfere Zemli [Determining the parameters of a landing module model for radio guidance in the Earth’s atmosphere]. Sb. RKT [Rocket and Space Technology Miscellany], TsNIImash Publ., 1984, ser. XI, no. 1. Available at: http://tsniimash.ru/publications
[11] Kudryavtsev S.I., Savchenko A.A. Avtomatizirovannyy kompleks programm rascheta spuskov korabley "Soyuz TM" i "Progress M" [Automated computational software package for Soyuz TM and Progress M spacecraft deorbiting]. Sb. RKT [Rocket and Space Technology Miscellany], TsNIImash Publ., 1991, ser. IX, no. 2. Available at: http://tsniimash.ru/publications