Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Analysis of optimal three-impulse transfer to an artificial lunar satellite orbit

Published: 04.03.2016

Authors: Gordienko E.S., Ivashkin V.V.

Published in issue: #3(51)/2016

DOI: 10.18698/2308-6033-2016-3-1472

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article studies a problem of optimal transfer of a spacecraft from the Earth into a high circular Artificial Lunar Satellite (ALS) polar orbit with the radius of6000 km. The single-impulse scheme is compared with the three-impulse one. The analysis is performed taking into account lunar gravitational field harmonics, gravitational attractions of the Earth and the Sun, and the engine thrust being limited. The results show that the three-impulse transfer from the initial selenocentric hyperbolic orbit to the final ALS one is better in terms of final mass than ordinary single-impulse deceleration. Control parameters implementing this operation and providing virtually the same power consumption as in the Keplerian case are given. The study reveals that there exists an optimal maximum distance of the maneuver in the case of real gravitational field, unlike in the Keplerian case.


References
[1] Ivashkin V.V. Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet [Optimising space maneuvres when distances to planets are limited]. Moscow, Nauka Publ., 1975.
[2] Frolov K.V., ed. Mashinostroenie. Entsiklopediya. [Mechanical Engineering. Encyclopaedia]. In 40 vols. Vol. IV-22, book 1. Raketno-kosmicheskaya tekhnika [Missile and aerospace technology]. Moscow, Mashinostroenie Publ., 2012.
[3] Narimanov G.S., Tikhonravov M.K., ed. Osnovy teorii poleta kosmicheskikh apparatov [Basic aspects of the theory of spacecraft flight]. Moscow, Mashinostroenie Publ., 1972.
[4] Standish E.M. JPL Planetary and Lunar Ephemerides. Interoffice memorandum: JPL IOM 312. F-98-048, 1998, August 26. Available at: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf
[5] Gordienko E.S., Ivashkin V.V., Lyu V. Kosmonavtika i raketostroenie - Cosmonautics and Rocket Engineering, 2015, no. 1 (80), pp. 37-47.
[6] Gordienko E.S., Ivashkin V.V. Molodezhnyy nauchno-tekhnicheskiy vestnik -Youth Science and Technology Herald, 2012, no. 5. Available at: http://sntbul.bmstu.ru/doc/467776.html
[7] Gordienko E.S., Lyu V. Molodezhnyy nauchno-tekhnicheskiy vestnik -Youth Science and Technology Herald, 2013, no. 9. Available at: http://sntbul.bmstu.ru/doc/606352.html
[8] Elyasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli [Introduction to the theory of artificial Earth satellites]. Moscow, Nauka Publ., 1965.
[9] Okhotsimskiy D.E., Sikharulidze Yu.G. Vvedenie v mekhaniku kosmicheskogo poleta [Introduction to the mechanics of space flight]. Moscow, Nauka Publ., 1990.
[10] Stepanyants V.A., Lvov D.V. Matematicheskoe modelirovanie - Mathematical Modeling, 2000, vol. 12, no. 6, pp. 9-14.