Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Final ascent to the geostationary orbit with the electric propulsion engine

Published: 26.02.2016

Authors: Yakovlev A.V., Vnukov A.A., Balandina T.N.

Published in issue: #2(50)/2016

DOI: 10.18698/2308-6033-2016-2-1466

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

The article describes the analysis of the schemes of completing spacecraft launch into geostationary orbit (GSO ) using the electric propulsion system, the assessment of propellant mass and time consumption, and the required values of these parameters for completing spacecraft launch into the geostationary orbit from a transfer orbit. The family of transfer orbits was compared to determine the effectiveness of completing spacecraft launch. The problems associated with spacecraft stay in Earth's radiation belt are discussed. The advantages of completing launch of the spacecraft equipped with electric propulsion systems into the GSO are demonstrated.


References
[1] Yakovlev A.V., Vnukov A.A., Balandina T.N., Pats A.A. Otsenka effektivnosti vyvedeniya kosmicheskogo apparata na zadannuyu orbitu [Assessment of Effectiveness of the Spacecraft Injection into the Desired Orbit with the Combined Method]. Kosmicheskoe priborostroenie. Sbornik nauchnykh trudov [Space Device Engineering. Collection of Scientific Papers]. Tomsk, 2015, pp. 219-222.
[2] Bulynin Yu.L., Popov V.V., Yakovlev A.V. Rezultaty ballisticheskogo obespecheniya zapuska na geostatsionarnuyu orbitu sputnik "Ekspress-AM5" [The Results of the Ballistic Support of the Satellite "Express-AM5" Launch into the Geostationary Orbit]. Tezisy doklada 19-y mezhdunarodnoy nauchnoy konferentsii "Sistemnyy analiz, upravlenie i navigatsiya" [19th International Scientific Conference "System analysis, control and navigation". Abstracts], Moscow, MAI Publ., 2014, pp. 256-262.
[3] Goebel D., Polk J., Sandler I., Mikellides I., Brophy J., Tighe W., Chien. K. Evaluation of 25-cm XIPS© Thruster Life for Deep Space Mission Application. 31th International Electric Propulsion Conference, USA, 2013, р. 19. Available at: http://www.researcggate.net/publication/245435753_Analytical_Ion_Thruster_Disc-harge_Performance_Model (accessed 07 May, 2015).
[4] Mirer S.A. Mekhanika kosmicheskogo poleta. Orbitalnoe dvizhenie [Space Flight Mechanics. Orbital Motion]. Available at: http://www.keldysh.ru/kur/move.pdf (accessed 10 June, 2015).
[5] Butikov E.I. Zakonomernosti keplerovykh dvizheniy [Laws of Keplerian motion]. Available at: http://butikov.faculty.ifmo.ru/Planets/Background.pdf (accessed 01 April, 2015).
[6] Soyuz User’s Manual. Available at: http://www.arianespace.com (accessed 18 October, 2014).
[7] Falcon 9 Launch Vehicle Payload User’s Guide. Available at: http://spaceflightnow.com (accessed 15 October, 2014).
[8] Proton Launch System Mission Planner’s Guide. Available at: http://www.ilslaunch.com (accessed 03 October, 2014).
[9] Reaktivnoe dvizhenie [Jet propulsion]. Available at: http://www.math24.ru (accessed 18 February, 2015).
[10] Produktsiya OKB "Fakel". Dvigatel SPD-140 [Production of SDB "Fakel". Engine SPD-140]. Available at: http://www.fakel-russia.com (accessed 20 July, 2015).
[11] Chebotarev V.E., Kosenko V.E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Basics of Designing Information Support Spacecrafts]. Krasnoyarsk, Siberian State Aerospace University Publ., 2011, 488 с.