Управление мгновенной диаграммой направленности лазерного пучка в системах с двухкоординатным акустооптическим дефлектором

© Д.А. Бондаренко^{1, 2}, В.Е. Карасик¹, В.П. Семенков²

 1 МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 2 ФГУП ГРПЗ, Москва, 117342, Россия

Рассмотрен метод управления двумя акустооптическими дефлекторами (AOД), обеспечивающий быстродействующую развертку лазерного пучка в пространстве при подаче на первый дефлектор сигнала постоянной частоты, а на второй линейно-частотно-модулированного (ЛЧМ) сигнала. Проведен анализ влияния параметров ЛЧМ-сигнала на мгновенную угловую диаграмму дифрагированного пучка. Предложен и исследован метод диагональной развертки пучка с использованием двух генераторов ЛЧМ-сигнала, позволяющий формировать лазерные растры с заданной угловой диаграммой направленности при работе с двухкоординатным АОД. Показано, что при использовании АОД на основе парателлурита с неаксиальной геометрией акустооптического взаимодействия и апертурой 9 мм, можно управлять мгновенной угловой диаграммой лазерного пучка в пределах от 40″ до 3°. Даны рекомендации по выбору параметров управляющих сигналов, обеспечивающих реализацию предложенного метода.

Ключевые слова: акустооптический дефлектор, линейно-частотно-модулированный сигнал, лазерный растр, лазерный пучок, угловая диаграмма, система телеориентации.

Введение. Двухкоординатные акустооптические дефлекторы (АОД) применяются в различных оптико-электронных устройствах, осуществляющих двухкоординатную пространственную развертку лазерного пучка: в системах телеориентации [1], лазерных сканирующих дальномерах, устройствах маркировки, приборах тепловой записи изображений [2], системах обзора пространства и др. АОД по сравнению с механическими отклоняющими устройствами обладают рядом преимуществ: высоким быстродействием, возможностью программного управления по принципу «частота — угол отклонения», малыми габаритами и энергопотреблением.

Наибольшая угловая скорость развертки лазерного пучка (до нескольких тысяч радиан в секунду) с использованием АОД может быть получена при подаче на дефлектор линейно-частотно-модулированного (ЛЧМ) управляющего сигнала [3]. При традиционном методе управления двухкоординатным АОД, когда плоскости акустооптического взаимодействия двух АОД взаимно ортогональны, применяется схема, приведенная на рис. 1, a, в которой используются генераторы постоянной частоты и ЛЧМ-сигнала. Например, для формирования растра из горизонтальных строк генератор постоянной частоты обеспечивает отклонение пучка в определенном вертикальном направлении, а генератор ЛЧМ-сигнала осуществляет быстродействующую развертку лазерного пучка по строке в горизонтальном направлении. При формировании вертикальных строк генераторы сигналов взаимно переключают на соответствующий АОД (см. рис. 1, a, штриховые линии). Вид формируемого при этом растра представлен на рис. 1, b.

Рис. 1. Схема включения двухкоординатного АОД при традиционном методе управления (*a*) и вид формируемого растра (б)

Особенностью дифракции лазерного пучка на акустической ЛЧМ-волне является увеличение мгновенной угловой диаграммы пучка в направлении сканирования, что уменьшает его осевую интенсивность и приводит, например, к падению отношения сигнал/шум в приемном канале оптико-электронной системы. Это является основным недостатком традиционного метода управления двухкоординатным АОД, не позволяющим использовать в полной мере угловой диапазон АОД и формировать растры с фиксированным числом строк и заданным уровнем неравномерности интенсивности.

Целью данной работы является определение параметров управляющих сигналов, обеспечивающих формирование двухкоординатного лазерного растра с заданной неравномерностью по интенсивности путем подачи ЛЧМ-сигнала одновременно на два АОД, реализующих метод диагональной развертки лазерного пучка.

Нормированное выражение для угловой диаграммы дифрагированного гауссова пучка на акустической ЛЧМ-волне, распространяющейся вдоль некоторой оси *x*, имеет вид [4]

$$I_{d,0}\left(\theta_x, \theta_y, t\right) = \frac{1}{b_x} \exp\left\{-\frac{1}{2} \frac{1}{\theta_0^2} \left(\left[\frac{1}{b_x}\left(\theta_x + V_d t\right)\right]^2 + \theta_y^2\right)\right\},\qquad(1)$$

где

$$b_x = \sqrt{1 + \left(\frac{\pi}{4} \frac{\Delta f}{T_a} \tau_d^2\right)^2}; \qquad (2)$$

 Δf , T_a — девиация частоты и длительность ЛЧМ-сигнала; $\tau_d = 2 w_0 / v_{_{3B}}$ — постоянная времени АОД; w_0 — радиус сечения перетяжки гауссова пучка по уровню $1/e^2$ интенсивности; $v_{_{3B}}$ — скорость звуковой волны.

Угловая скорость развертки пучка

$$V_d = \frac{\lambda}{\upsilon_{\rm 3B}} \frac{\Delta f}{T_a},\tag{3}$$

где λ — длина волны света в вакууме.

Из выражения (1) следует, что угловая диаграмма пучка увеличивается только в направлении развертки пучка вдоль оси x, а в ортогональной плоскости не изменяется. При этом осевая интенсивность пучка уменьшается в b_x раз, что является недостатком традиционного метода двухкоординатной развертки пучка.

При реализации метода диагональной развертки согласно схеме, приведенной на рис. 2, *a*, на оба АОД одновременно подаются ЛЧМ-сигналы, и выражение (1) преобразуется к виду

$$I_{d,0}(\theta_x, \theta_y, t) = \frac{1}{b_x b_y} \exp\left\{-\frac{1}{2} \frac{1}{\theta_0^2} \left(\left[\frac{1}{b_x} \left(\theta_x + \frac{\lambda}{v_{_{3B}}} \frac{\Delta f_x}{T_a} t\right)\right]^2 + \left[\frac{1}{b_y} \left(\theta_y + \frac{\lambda}{v_{_{3B}}} \frac{\Delta f_y}{T_a} t\right)\right]^2 \right) \right\}.$$
(4)

Рис. 2. Схема включения двухкоординатного АОД при использовании метода диагональной развертки (*a*) и вид формируемого растра (б)

Как следует из выражения (4), на выходе второго АОД дифрагированный пучок движется под углом β к плоскостям акустооптического взаимодействия, определяемым соотношением

$$tg \ \beta = \frac{\Delta f_x}{\Delta f_y}.$$
 (5)

Ограничимся частным случаем формирования растра с равными угловыми размерами во взаимно ортогональных направлениях. Тогда при $\beta = 45^{\circ}$ девиации частот ЛЧМ-сигналов $\Delta f_x = \Delta f_y = \Delta f / \sqrt{2}$ и выражение (4) принимает вид

$$I_{d,0}\left(\theta_{x},\theta_{y},t\right) = \frac{1}{b_{\beta}^{2}} \exp\left\{-\frac{1}{2}\left(\frac{2\pi}{\lambda}\frac{w_{0}}{b_{\beta}}\right)^{2} \times \left(\left[\theta_{x} + \frac{\lambda}{v_{_{3B}}}\frac{\Delta f_{x}}{T_{a}}t\right]^{2} + \left[\theta_{y} + \frac{\lambda}{v_{_{3B}}}\frac{\Delta f_{y}}{T_{a}}t\right]^{2}\right)\right\},$$
(6)

где

$$b_{\beta} = \sqrt{1 + \left(\frac{\pi}{4} \frac{\upsilon_{_{3B}} \Delta \Theta_{\mathrm{p}} \tau_d^2}{\sqrt{2} \cdot \lambda T_a}\right)^2}.$$
 (7)

Здесь $\Delta f = \frac{\upsilon_{_{3B}}}{\lambda} \Delta \theta_p$, где $\Delta \theta_p$ — угловой размер формируемого растра (коэффициент $\sqrt{2}$ учитывает уменьшение девиации ЛЧМ-сигнала, необходимое для формирования одной строки растра с угловым размером $\Delta \theta_p$).

Из выражений (6), (7) следуют два важных вывода. Во-первых, угловая скорость развертки пучка при реализации метода диагональной развертки по сравнению с традиционным методом не изменяется, поскольку

$$V_d = \frac{\lambda}{\upsilon_{_{3B}}} \frac{\sqrt{\Delta f_x^2 + \Delta f_x^2}}{T_a} = \frac{\lambda}{\upsilon_{_{3B}}} \frac{\sqrt{\left(\Delta f/\sqrt{2}\right)^2 + \left(\Delta f/\sqrt{2}\right)^2}}{T_a} = \frac{\lambda}{\upsilon_{_{3B}}} \frac{\Delta f}{T_a}.$$
 (8)

Во-вторых, угловая диаграмма лазерного пучка в направлении развертки уменьшается в $\sqrt{2}$ раз, что следует из сравнения выражений (2) и (7), а угловая диаграмма пучка в ортогональном направлении при этом увеличивается в b_{β} раз.

Таким образом, использование метода диагональной развертки позволяет уменьшить нежелательное дополнительное падение интенсивности лазерного пучка, возникающее вследствие увеличения угловой диаграммы в направлении развертки пучка и одновременно сформировать требуемую угловую диаграмму пучка в ортогональной плоскости. Согласно выражению (7) для управления диаграммой пучка в ортогональной плоскости можно использовать только длительность T_a ЛЧМ-сигнала, поскольку угловой размер $\Delta \theta_p$ формируемого растра задан.

Рассмотрим процесс формирования растра из N строк. На рис. 3 показано распределение интенсивности для растра из четырех строк в плоскости, ортогональной направлению развертки пучка, где $\Delta \theta_l$ — угловой интервал между соседними строками растра.

Неравномерность интенсивности в пределах формируемого растра можно записать в виде

$$\varepsilon = \frac{I_{\min}}{I_{\max}} = \exp\left(-\frac{\theta_l^2}{2\,\theta_0^2}\right),\tag{9}$$

где θ_0 — радиус угловой диаграммы гауссова пучка по уровню e^{-2} интенсивности.

Рис. 3. Сечение интенсивности для растра из четырех строк

Поскольку, как следует из рис. 3, $\Delta \theta_l = \Delta \theta_p / (N-1)$, то выражение (9) преобразуется к виду

$$\varepsilon = \exp\left[-\frac{1}{2}\left(\frac{\Delta\theta_{\rm p}}{\left(N-1\right)\,\theta_0}\right)^2\right].$$
(10)

С учетом выражения (7) из последнего выражения можно получить соотношение для расчета длительности ЛЧМ-сигнала:

$$T_a = \frac{\pi}{4} \frac{v_{_{3B}}}{\lambda} \,\theta_0 \,\tau_d^2 \left(N - 1\right) \sqrt{-\ln \varepsilon}. \tag{11}$$

Особенностью выражения (11) является его независимость от углового размера $\Delta \theta_p$ растра, что позволяет на основе рассчитанного значения T_a получить такой ЛЧМ-сигнал, под действием которого будет формироваться растр с заданной степенью неравномерности по интенсивности при любом значении $\Delta \theta_p$.

В табл. 1 приведены вычисленные по выражению (11) значения T_a при различных значениях неравномерности є интенсивности и числа строк *N* в растре для анизотропного АОД на парателлурите со следующими параметрами: $v_{3B} = 657 \text{ м} \cdot \text{c}^{-1}$, $\lambda = 1,064 \text{ мкм}$, $\theta_0 = 10^{-4}$ рад, $\tau_d = 10,7 \text{ мкс}$.

В табл. 2 в качестве примера представлены сечения интенсивности растра, состоящего из восьми строк, в плоскости, ортогональной направлению развертки лазерного пучка, при реализации метода диагональной развертки для двух вычисленных значений T_a (59 и 32,4 мкс), обеспечивающие минимальный относительный уровень неравномерности интенсивности в формируемом растре ε , равный 0,1 и 0,5 соответственно. В частности, из табл. 2 следует, что ε остается постоянной при изменении углового размера $\Delta \theta_p$ растра от 0,006 до 0,018 рад.

Таблица 1

Ν	<i>T_a</i> , мкс, при є								
	0,05	0,1	0,25	0,33	0,5	0,7	0,8		
4	28,8	25,3	19,6	17,5	13,9	9,9	7,9		
8	67,3	59	45,8	40,9	32,4	23,2	18,4		
16	144	126	98,2	87,7	69,3	49,7	39,3		
32	298	261	203	181	143	103	81,3		

Длительность ЛЧМ-сигнала для растра из N строк с неравномерностью &

Рассмотрим возможность практической реализации предлагаемого метода. Для этого определим законы изменения частоты ЛЧМсигналов во времени, поступающих на первый и второй АОД и обеспечивающих реализацию метода диагональной развертки пучка.

Пространственно-временное положение дифрагированного лазерного пучка на выходе двухкоординатного АОД определяется выражением

$$\theta(t) = \frac{v_{3B}}{\lambda} f_{x,y}(t), \qquad (12)$$

где $f_{x,y}(t)$ — соответствующие временные зависимости изменения частоты ЛЧМ-сигнала, определяемые с учетом рис. 3, *a*:

$$f_{x}(t) = f_{0} - \sum_{n=1}^{N} \frac{\sqrt{2}}{2} \frac{v_{_{3B}}}{\lambda} \Delta \Theta_{p} \left[n - \frac{n-1}{N-1} - \frac{t}{T_{a}} \right] \operatorname{rect} \left[\frac{t}{T_{a}} - n + 0, 5 \right];$$

$$f_{y}(t) = f_{0} - \sum_{n=1}^{N} \frac{\sqrt{2}}{2} \frac{v_{_{3B}}}{\lambda} \Delta \Theta_{p} \left[n + \frac{n-1}{N-1} - \frac{t}{T_{a}} - 1 \right] \operatorname{rect} \left[\frac{t}{T_{a}} - n + 0, 5 \right],$$
(13)

где f_0 — центральная частота рабочей полосы АОД, определяющая в пространстве угловое положение $\theta(f_0)$ центра формируемого растра; n — порядковый номер строки растра; rect (·) — прямоугольная функция.

Как было указано выше, при реализации метода диагональной развертки растр формируется под углом 45° к плоскостям акустооптического взаимодействия АОД. Поэтому, если нужно обеспечить развертку двухкоординатного растра в вертикальном и горизонтальТаблица 2

ө, рад ө, рад Ө, рад ө, рад 0,005 0,005 0,005 0.005 $T_a = 32,4$ mkc, $\varepsilon = 0,5$ 0 C 0 0 -0.005-0,005 -0,005-0,005 ω -0,010-0,010-0.010-0.010I_a(θ)/I_o, отн. ед. 0,000,000 0,000,000 0,000 I_a(θ)/I_o, οτη. εд. 1_a(θ)/I_o, οτη. εд. 1_a(θ)/I_o, οτη. εд. Ө, рад Ө, рад ө, рад **Ө**, рад 0,005 0,005 0,005 0,005 $T_a = 59 \text{ mkc}, \epsilon = 0,1$ \sim 0 \sim -0,005-0.005-0.005-0,005ω -0,010-0.010-0.010-0.010.дэ.нто.,0І\(θ)_bI 2000,000 2420,000 1001 $\Delta \theta_p$, рад 0,018 0,006 0,013 0,01

Сечения интенсивности растра из восьми строк

ном направлениях, что часто требуется в локационных системах различного назначения, необходимо оба АОД развернуть на угол 45° , как показано на рис. 4, δ .

Рис. 4. Растр из восьми строк, полученный методом диагональной развертки (*a*), и растр, повернутый на 45° (б)

Временные зависимости изменения частоты ЛЧМ-сигнала, поступающего на первый и второй АОД при реализации метода диагональной развертки, рассчитанные на основе выражения (13), при $T_a = 59$ мкс, $n \in (1, N = 8)$, $\Delta \theta_p = 0,01$ рад приведены на рис. 5.

Рис. 5. Временные зависимости изменения частоты ЛЧМ-сигнала при реализации метода диагональной развертки

Рассмотренный выше способ развертки лазерного пучка относился к непрерывному режиму работы лазера. Однако метод диагональной развертки может быть эффективно использован и в системах с импульсными лазерами, работающими в режиме модуляции добротности и формирующими короткие импульсы излучения с длительностью $\tau_p = 1...100$ нс, например в лазерных локационных системах различного назначения или в сканирующих лазерных дальномерах с целью управления мгновенной угловой диаграммой пучка. Использование АОД позволяет существенно повысить быстродействие подобных систем, отказавшись от применения громоздких телескопических систем переменного увеличения с механическими подвижными компонентами.

Предлагаемый метод позволяет управлять угловой диаграммой падающего лазерного пучка на выходе АОД вплоть до значения

$$\theta_0 = \frac{\lambda}{\upsilon_{_{3B}}} \Delta f_{\max}, \qquad (14)$$

где Δf_{max} — ширина рабочей полосы частот АОД.

В этом случае требуется синхронизация работы импульсного лазера с АОД: лазерный импульс должен приходить в момент времени, когда апертура дефлекторов будет заполнена ЛЧМ-волной, т. е. при $t = \tau_d$. Поскольку на практике всегда выполняется условие $\tau_d >> \tau_p$, акустическое поле в кристалле дефлектора оказывается «замороженным» на время действия импульса лазерного излучения, и поэтому выражение (2) в линейной области параметров ЛЧМ-сигнала преобразуется к виду

$$b = \frac{\pi}{4} \Delta f \tau_d. \tag{15}$$

Относительное распределение интенсивности дифрагированного пучка после прохождения двух АОД, к которым приложены одинаковые по модулю ЛЧМ-сигналы с девиацией Δf , в случае импульсного излучения на основе выражения (6) будет описываться выражением

$$I_{d,0}\left(\theta_x, \theta_y\right) = \frac{1}{b^2} \exp\left\{-\frac{1}{2}\left(\frac{2\pi}{\lambda}\frac{w_0}{b}\right)^2 \left(\theta_x^2 + \theta_y^2\right)\right\}.$$
 (16)

Расчетные диаметры поперечных сечений интенсивности пучка импульсного лазера по уровню e^{-2} , рассчитанные по выражениям

(15), (16), представлены на рис. 6, при расходимости исходного пучка $\theta_0 = 0,1$ мрад и девиации частот ЛЧМ-сигналов Δf , равной 1, 4, 16 и 32 МГц соответственно, которые демонстрируют управление диаграммой лазерного пучка с использованием метода диагональной развертки.

Рис. 6. Диаметр поперечного сечения интенсивности пучка излучения импульсного лазера, полученного методом диагональной развертки при девиации частоты ЛЧМ-сигнала Δf , равной 1 (*a*), 4 (*б*), 16 (*в*) и 32 МГц (*г*)

Экспериментальную проверку результатов теоретического анализа проводили на установке (рис. 7), в которой пучок излучения от твердотельного лазера диаметром 9 мм с длиной волны 1,06 мкм последовательно проходил дефлекторы АОД 1 и АОД 2, осуществляющие развертку дифрагированного пучка во взаимно ортогональных направлениях под действием управляющих сигналов от соответствующих генераторов ЛЧМ-сигнала. На выходе двухкоординатного АОД 2 установлен длиннофокусный объектив, за которым в плоскости перетяжки лазерного пучка помещена измерительная ПЗС-камера Spiricon 620U Ophir Inc., соединенная с персональной ЭВМ (ПЭВМ) с размещенным программным обеспечением, предназначенным для регистрации и измерения характеристик наблюдаемых в эксперименте распределений интенсивности пучка.

Рис. 7. Схема экспериментальной установки

Рис. 8. Конструкция АОД на парателлурите

В экспериментах использован анизотропный АОД из парателлурита с неаксиальной геометрией акустооптического взаимодействия [5] (рис. 8). АОД работали в полосе частот управления 65... 96 МГц с центральной частотой 80 МГц. Мощность подводимого высокочастотного сигнала равнялась 5 Вт.

Эффективность дифракции в полосе рабочих частот для каждого АОД составляла не менее 80 % падающей мощности пучка.

Для измерения углового положения $\theta_{\Delta f}$ лазерного пучка при его дифракции на двух последовательно установленных АОД в процессе эксперимента изменяли девиацию частоты ЛЧМ-сигналов в диапазоне частот $\Delta f = 0, 25...32$ МГц, подаваемых одновременно на два АОД. Затем вычисляли экспериментальное значение коэффициента уширения лазерного пучка $b_3 = \theta_{\Delta f}/\theta_0$, которое сравнивали с теоретическим значением b_p , полученным из выражения (2). Результаты приведены в табл. 3, где в последней колонке также представлены распределения интенсивности дифрагированного пучка в фокальной плоскости измерительного объектива, полученные с помощью ПЗСкамеры.

При выполнении измерений ПЗС-камеру поворачивали на 45° вокруг оптической оси, при этом развертка лазерного пучка регистрировалась в виде горизонтальной строки, поскольку период развертки строки был намного меньше периода накопления ПЗС-камеры. Это позволило экспериментально зарегистрировать увеличение угловой расходимости лазерного пучка в другой плоскости, ортогональной плоскости развертки пучка (см. табл. 3, белая штриховая линия) при изменении параметров управляющего ЛЧМ-сигнала.

На рис. 9 представлены экспериментальные и расчетные значения коэффициента увеличения угловой расходимости дифрагированного пучка. Видно, что в диапазоне девиации частоты $\Delta f =$ = 4...32 МГц ЛЧМ-сигнала отклонения экспериментальных значений от расчетных не превышают 5 %.

Внешний вид лазера с двумя последовательно установленными АОД и непосредственно АОД, используемые в экспериментах, представлен на рис. 10.

Таблица 3

Параметры угловой расходимости и распространения интенсивности лазерного пучка, дифрагированного на двух АОД

$\Delta f,$ МГц	θ _{Δf} , мрад	$b_{\mathfrak{I}}$	bp	Распределение интенсивности пучка
0,25	0,137	1,05	1,2	0
0,5	0,162	1,2	1,7	
1	0,189	1,5	2,8	
2	0,510	3,9	5,7	
4	1,36	10,5	11,3	
8	3,12	24	22,5	
16	6,12	47	45	
32	12,1	93	90	

Рис. 9. Коэффициент увеличения угловой диаграммы лазерного пучка для ЛЧМ-сигнала (сплошная линия — теория, точки — эксперимент)

Рис. 10. Внешний вид лазера с двумя АОД (*a*) и непосредственно АОД (*б*)

Заключение. Предложен метод диагональной развертки лазерного пучка при дифракции на двух последовательно установленных АОД, развернутых ортогонально относительно друг друга, на которые одновременно подаются одинаковые по модулю ЛЧМ-сигналы. Метод диагональной развертки позволяет формировать лазерные растры с заданной неравномерностью интенсивности пуска независимо от угловых размеров растра. При этом неравномерность интенсивности пучка в формируемом растре определяется выбором длительности ЛЧМ-сигнала, поступающего на первый и второй АОД.

Показано, что метод диагональной развертки может быть использован для создания управляемой диаграммы направленности пучка импульсных лазеров. В частности, для использованного в работе АОД на парателлурите с неаксиальной геометрией акустооптического взаимодействия угловая расходимость лазерного пучка может быть увеличена до 270 раз.

Результаты экспериментальных исследований подтвердили расчетные соотношения с расхождением, не превышающим 5 % в линейной области параметров ЛЧМ-сигнала.

Полученные результаты могут быть использованы для совершенствования тактико-технических характеристик лазерных систем телеориентации сканирующего типа, сканирующих лазерных дальномеров и других оптико-локационных систем, в составе которых используются АОД.

ЛИТЕРАТУРА

- [1] Семенков В.П. Способ формирования информационного поля лазерной системы телеориентации и устройство для его осуществления. Пат. 2267734 Российская Федерация, 1997, бюл. № 35.
- [2] Антонов С.Н., Резвов Ю.Г. Высокоэффективная многолучевая брэгговская акустооптическая дифракция при фазовой оптимизации поличастотной акустической волны. *Журнал технической физики*, 2007, т. 77, вып. 8, с. 93–100.
- [3] Балакший В.И., Парыгин В.Н. Акустооптические системы непрерывного сканирования света. *Радиотехника и электроника*, 1974, № 10, с. 2163–2169.
- [4] Бондаренко Д.А., Карасик В.Е., Семенков В.П. Исследование режима дифракции лазерного пучка на линейно-частотно-модулированной акустической волне в анизотропном акустооптическом дефлекторе. Вестник МГТУ им. Н.Э. Баумана. Спецвыпуск Современные проблемы оптотехники, 2011, с. 31–41.
- [5] Балакший В.И. [и др.] *Физические основы акустооптики*. Москва, Радио и связь, 1985. 280 с.

Статья поступила в редакцию 03.07.2013

Ссылку на эту статью просим оформлять следующим образом:

Бондаренко Д.А., Карасик В.Е., Семенков В.П. Управление мгновенной диаграммой направленности лазерного пучка в системах с двухкоординатным акусто-

оптическим дефлектором. Инженерный журнал: наука и инновации, 2013, вып. 9.

URL: http://engjournal.ru/catalog/pribor/optica/921.html

Бондаренко Дмитрий Анатольевич родился в 1975 г., окончил МИИГАиК в 2000 г. Начальник лаборатории ФГУП ГРПЗ, аспирант кафедры «Лазерные и оптико-электронные системы» МГТУ им. Н.Э. Баумана. Специализируется в области лазерных оптико-электронных приборов и лазерных систем управления. e-mail: bondar_art@mail.ru

Карасик Валерий Ефимович родился в 1939 г., окончил МВТУ им. Н.Э. Баумана в 1964 г. Д-р техн. наук, профессор кафедры «Лазерные и оптико-электронные системы» МГТУ им. Н.Э. Баумана. Автор более 150 научных трудов в области лазерного зондирования, локации и дальнометрии. e-mail: karassik@bmstu.ru

Семенков Виктор Прович родился в 1948 г., окончил Ленинградский электротехнический институт им. В.И. Ульянова в 1972 г. Канд. техн. наук, главный конструктор по направлению ФГУП ГРПЗ. Автор более 100 научных работ и патентов в областях лазерных систем управления и акустооптики.