# Исследование и расчет малогабаритного панкратического объектива перископического типа

## © В.Г. Поспехов, А.В. Крюков

#### МГТУ им. Н.Э. Баумана, Москва, 105005, Россия

Рассмотрена специфика габаритного и аберрационного расчета малогабаритного панкратического объектива перископического типа. Исследованы свойства структурной схемы на основе двухгрупповой системы переменного увеличения, выявлены особенности автоматизированной коррекции схем в программах OPAL и ZEMAX, освещены вопросы построения оптимизационных моделей.

**Ключевые слова:** панкратический объектив, схема перископического типа, оптимизация оптических систем, объектив для мобильного телефона, камера планшетного компьютера

**Введение.** В настоящее время на рынке фототехники все более прочную позицию занимают цифровые фотоаппараты, которые предоставляют несравненно большие возможности получения фото-графий и оперативной передачи их по электронной почте в любую точку земного шара.

Ведущие производители цифровой фототехники и оптических блоков, такие как Olympus, Canon, Nikon, Sony и др., ведут постоянную работу по созданию цифровых фотоаппаратов различных классов — от фотоаппаратов начального уровня до полупрофессиональных и профессиональных [1–3].

Среди моделей начального уровня особой популярностью пользуются компактные фотоаппараты, оснащенные панкратическими объективами с перепадом фокусных расстояний от 3 до 5, встроенной вспышкой, устройствами автофокусировки и стабилизации изображения. Основными критериями, влияющими на выбор компактной любительской цифровой камеры, являются сравнительно невысокая стоимость, малые вес и габариты, разрешение матрицы, перепад фокусных расстояний, размер дисплея для просмотра, стильный внешний вид.

В сегменте компактных фотокамер особое место занимают ультракомпактные фотоаппараты, которые получили широкое распространение благодаря применению панкратических объективов, построенных по специальной так называемой перископической оптической схеме. В первой (головной) группе объектива такого типа введены призма или зеркало, отклоняющие оптическую ось на 90°, что позволяет основную часть объектива размещать по вертикали в корпусе камеры, который существенно больше, чем толщина камеры. При этом снижаются требования к длине объектива и появляется возможность сократить толщину камеры. По итогам тестирования, проведенного в 2005 г. одним из зарубежных журналов по цифровой фотографии, лучшей ультракомпактной камерой признана камера Sony Cyber-shot DCC-T7, обладающая следующими характеристиками: габаритные размеры  $92 \times 60 \times 15$  мм, матрица формата 1/2,5''; 5,1 Мп; объектив перископического типа Vario-Tessar (Carl Zeiss) с фокусным расстоянием f' = 6,3...19,0 мм и относительным отверстием от D/f' = 1:3,5 до D/f' = 1:4,4.

Последнее пятилетие целый ряд производителей (Olympus, Nikon, Fuji и др.) работают над повышением качества изображения фотоаппаратов такого рода за счет применения ПЗС- (ССD) и КМОП- (СМОS) матриц с объемом 10 Мп (диагональ 2y' 1/2,3'') и 12 Мп (диагональ 2y' 1/1,6''), за счет увеличения перепада фокусных расстояний до M = 5...7 и углового поля при минимальном фокусном расстоянии, введения устройств стабилизации изображения.

На основе анализа сайтов ведущих производителей получены основные характеристики последнего поколения фотокамер с уменьшенными габаритами (табл. 1). В состав единого оптико-электронного блока камер конструктивно входят панкратический объектив перископического типа, включающий оправы отдельных групп, элементы управления движением подвижных групп (электродвигатели для изменения фокусного расстояния и фокусировки, механизмы перемещения групп), механизм затвора, устройство стабилизации изображения, а также матрица. У всех марок фотокамер, приведенных в табл. 1, используются матрицы ССD формата 1/2,3".

Новое поколение ультракомпактных цифровых фотоаппаратов находит спрос также благодаря удобству при транспортировке, хорошей герметичности и ударопрочности. Некоторые образцы камер, например Olympus Mju1030SW, выполнены в водонепроницаемом корпусе, их можно применять для подводного фотографирования на глубине до 10 м, а один из последних образцов ультракомпактных камер Nikon — Nikon COOLPIX S1000pj — оснащен встроенным проектором для оперативного просмотра кадров в помещении небольшого объема.

Анализ патентных материалов, проведенный в работах [4–10], позволил определить структуру оптических схем, применяемых для разработки панкратических объективов перископического типа. В табл. 2 приведены основные характеристики ряда панкратических объективов перископического типа ведущих производителей ультракомпактных камер. Изучение схем показало, что в основном объективы выполнены по четырехгрупповым схемам постоянной длины. Изменение фокусного расстояния осуществляется путем перемещения вдоль оптической оси двух групп, образующих систему панкратического увеличения (СПУ).

Таблица 1

| ф                           | Фотока          | мера        | Число                   | Объен                               | ктив                     |
|-----------------------------|-----------------|-------------|-------------------------|-------------------------------------|--------------------------|
| Фирма,<br>марка             | Габариты,<br>мм | Macca,<br>г | пикселей<br>матрицы, Мп | Фокусное рас-<br>стояни $e f'$ , мм | Диафрагмен-<br>ное число |
| Fujifilm Fine-<br>Pix Z20fd | 91×56×19        | 110         | 10,0                    | 6,0–18,0                            | 3,7–4,2                  |
| Casio Exilim<br>EX-V7       | 96×60×26        | 149         | 7,0                     | 6,0-42,0                            | 3,4–6,3                  |
| Sony<br>DSC-T700            | 95×58×16        | 135         | 10,1                    | 6,0–25,0                            | 3,5–4,6                  |
| Nikon COOL-<br>PIX S1000pj  | 98×60×22        | 145         | 12,0                    | 5,4–21,4                            | 2,8–5,8                  |
| Samsung i85                 | 95×62×20        | 158         | 8,2                     | 6,0–30,0                            | 3,5–4,9                  |
| Olympus<br>Mju1030 SW       | 93×61×21        | 173         | 10,0                    | 5,1–20,3                            | 3,5–5,1                  |

Основные характеристики ультракомпактных фотокамер

Таблица 2

# Основные характеристики панкратических объективов перископического типа

| Фирма   | Фокусное расстоя- | Угловое<br>поле ω, | Длина<br><i>L</i> , | Диафраг-<br>менное | Число линз /<br>асферических | Число групп / подвижных |
|---------|-------------------|--------------------|---------------------|--------------------|------------------------------|-------------------------|
| _       | ние $f'$ , мм     | град               | MM                  | число              | поверхностей                 | групп                   |
| Olympus | 6,0–14,0          | 32,7-13,9          | 58,1                | 2,5–4,5            | 9/3                          | 4/2                     |
| Minolta | 5,9–33,7          | 31,4–6,3           | 71,1                | 2,8–3,6            | 9/4                          | 4/3                     |
| Sony    | 6,9–20,7          | 30,2–10,4          | 48,4                | 3,6–4,3            | 10/5                         | 5/2                     |
| Ноуа    | 6,3–16,6          | 31,0-12,0          | 44,8                | 2,9–5,6            | 10/5                         | 4/3                     |
| Olympus | 3,2–9,7           | 32,5-11,5          | 38,5                | 2,5–4,3            | 9/3                          | 4/2                     |
| Olympus | 3,2–9,7           | 32,2–22,2          | 38,0                | 2,7–4,6            | 9/3                          | 4/2                     |

Объектив фирмы Minolta [4] построен на основе СПУ из группы отрицательной (вторая группа) и положительной (третья группа) оптических сил, первая и четвертая группы — неподвижные, положительной оптической силы.

Объектив фирмы Sony [10] включает положительную пятую группу, которая перемещается перпендикулярно оптической оси для

компенсации вибраций; компенсация смещения плоскости изображения и фокусировка на конечные дистанции осуществляется перемещением четвертой группы положительной оптической силы. Изменение фокусного расстояния происходит за счет перемещения второй группы отрицательной оптической силы, первая группа положительной силы — неподвижная.

Представляет интерес один из вариантов объективов фирмы Olympus [7], рассчитанных на диагональ матрицы 4 мм: он имеет наименьшую длину из рассматриваемых объективов. Это достигнуто, как будет показано ниже, за счет особенностей построения СПУ и одной из ее групп.

Исследования свойств структурной схемы объектива-аналога в области габаритного расчета. В качестве аналога выбрана схема объектива, структурное построение которой показано на рис. 1.



Рис. 1. Структурная схема построения объектива-аналога

Объектив представляет собой четырехгрупповую систему: первая и четвертая группы линз отрицательной и положительной оптических сил соответственно являются неподвижными, а вторая и третья группы положительной оптической силы образуют СПУ и перемещаются с целью изменения фокусного расстояния.

В табл. 3 приведены значения основных параметров групп (фокусного расстояния, положения пе-

редней и задней главных плоскостей) объектива-аналога, определенные после подбора отечественных марок стекол, от которых отталкивались при расчете объектива.

Таблица 3

| Номер     | Номер       | Фокусное | Положени<br>плоск                      | е главной<br>ости                       | Сумма           |
|-----------|-------------|----------|----------------------------------------|-----------------------------------------|-----------------|
| группы по | поверхности | f', мм   | передней <i>s</i> <sub>H</sub> ,<br>мм | задней <i>s</i> ' <sub>H'</sub> ,<br>мм | $\Sigma d$ , мм |
| 1         | 1–8         | -6,093   | 2,509                                  | -4,063                                  | 11,65           |
| 2         | 9–14        | 8,047    | 0,267                                  | -2,968                                  | 4,65            |
| 3         | 15–16       | 52,276   | -1,259                                 | -1,885                                  | 1,00            |
| 4         | 17–19       | 36,212   | 1,309                                  | 0,102                                   | 2,15            |

Значения основных параметров групп объектива-аналога

Основные формулы для расчета объектива приведены ниже:

$$f'_{\Sigma} = f'_{1} \beta_{\text{СПУ}} \beta_{4}; \quad d_{1} = f'_{1} - a_{\text{СПУ}}; \quad d_{2} = d_{\text{СПУ}}; \quad d_{3} = a'_{\text{СПУ}} - a_{4};$$
  
$$a_{4} = \frac{1 - \beta_{4}}{\beta_{4}} f'_{4}; \quad a'_{F} = a'_{4} = (1 - \beta_{4}) f'_{4}; \quad L_{\text{of}} = d_{1} + d_{2} + d_{3} + a'_{F},$$
 (1)

где  $L_{ob}$  — длина объектива;  $f'_i$ ,  $a'_i$ ,  $\beta_i$  — фокусные расстояния, задние отрезки и линейные увеличения *i*-й группы линз объектива;  $d_i$  — воздушные промежутки после *i*-й группы; индекс СПУ относится к параметрам всей системы переменного увеличения (вторая и третья группы линз на рис. 1).

При расчете параметров панкратического объектива задают следующие оптические характеристики объектива:

значения минимального (или максимального) фокусного расстояния  $f'_{\Sigma \min}$  ( $f'_{\Sigma \max}$ );

перепад фокусных расстояний  $M = f'_{\Sigma \max} / f'_{\Sigma \min}$ ;

длину  $L_{ob}$  объектива или задний фокальный отрезок  $a'_F$ ;

угловое поле 2ю в пространстве предметов или диагональ 2у' матрицы (приемника изображения);

диафрагменное число f'/D.

**Расчет двухгрупповой СПУ.** Расчет схемы панкратического объектива начинают с выбора типа оптической схемы и параметров двухгрупповой СПУ: k,  $f'_2$ ,  $L_{\rm СПУ}$ , где  $k = f'_1/f'_2$  — отношение фокусных расстояний первой и второй групп СПУ,  $L_{\rm СПУ}$  — длина СПУ. Далее проводят расчет взаимного положения групп при изменении увеличения СПУ и уточняют области их значений.

Для определения параметров СПУ ( $L_{\text{СПУ}}$ ,  $a_{\text{СПУ}}$ ,  $a'_{\text{СПУ}}$ ,  $\beta_{\text{СПУmin}}$ ) и установления закона перемещения групп проведен расчет осевого луча для минимального фокусного расстояния всего объектива. В результате получены следующие значения, которые использованы при расчете взаимного положения групп:  $L_{\text{СПУ}} = 31,575 \text{ мм}$ ;  $\beta_{\text{СПУ min}} = -0,5706$ ; k = 0,1539;  $f'_2 = 52,276 \text{ мм}$ .

Система панкратического увеличения объектива относится к типу систем с характеристиками  $f_1' > 0$ ,  $f_2' > 0$ ,  $L_{\rm CHY} > 0$ ,  $\beta_{\rm CHY} < 0$ ; свойства такой системы изучены ранее [11]. Также в работе [11] даны рекомендации по выбору значений фокусных расстояний, согласно которым для получения положительного значения расстояния *d* между главными плоскостями подвижных групп на всем диапазоне изменения увеличения фокусное расстояние  $f_2'$  второй группы следует выбирать из соотношения

$$\frac{k+1}{4k}L_{\text{CHV}} > f_2' > \frac{1}{4k}L_{\text{CHV}}.$$
 (2)

Графически неравенство можно представить двумя гиперболами. Область допустимых значений фокусного расстояния второй группы  $f'_2$  при различных значениях отношения k лежит между гиперболами [11].

Расчет параметров СПУ проведен по формулам из работы [11]. Для создания СПУ с меньшими габаритами использовано решение, которое получается при выборе знака «минус» перед корнем в выражении для *d*. Недостатком такого типа СПУ являются положительные значения обоих фокусных расстояний, что создает трудности при исправлении кривизны поля.

Как показали исследования, проведенные авторами данной работы, возможно применение соотношений k,  $f'_2$ ,  $L_{\rm СПУ}$ , при которых условие d > 0 не выполняется. Напротив, условие d < 0 на всем или на части диапазона изменения увеличения  $\beta_{\rm СПУ}$  дает возможность несколько сократить габариты объектива. Однако при отрицательных значениях d переход к группам с конечными толщинами осуществим лишь в случае применения особой конструкции по крайней мере одной из групп, у которой главные плоскости вынесены за пределы толщин группы.

Для выбора области предпочтительных значений k,  $f'_2$  проведены расчеты предельных значений параметров СПУ. Предельные значения фокусных расстояний  $f'_2$ , полученные из неравенства (2) при  $L_{\text{СПУ}} = 31,575$  мм, сведены в табл. 4. По значению  $f'_{2\text{min}}$  находили значения увеличений  $\beta_1, \beta_2$ , при которых расстояние d обращается в нуль. Отношение  $M = \frac{\beta_2}{\beta_1}$  является максимальным перепа-

дом увеличений, который может быть реализован при конструкции групп с традиционным положением главных плоскостей. При выборе промежуточных значений  $f'_2$  и переходе к группам конечной толщины перепад увеличений сокращается, при выборе значения фокусного расстояния равным  $f'_{2\text{max}}$  реализация панкратической системы возможна лишь при отрицательных значениях расстояния d между главными плоскостями групп. Расчет взаимных положений групп (d,  $a_{\text{СПУ}}$ ,  $a'_{\text{СПУ}}$ ) при  $L_{\text{СПУ}} = 31,575$  мм и значениях k = 0,1539...0,5000, а также  $f'_2 = 21,93...52,28$ , взятых в диапазоне предельных значений, был проведен по методике, описанной в работе [11].

Таблица 4

| k      | $\beta_1$ | $\beta_2$ | М     | $f_{2\max}$ , MM | $f_{2'\min}$ , MM |
|--------|-----------|-----------|-------|------------------|-------------------|
| 0,1539 | -0,491    | -2,037    | 4,15  | 59,174           | 51,28             |
| 0,2000 | -0,420    | -2,380    | 5,67  | 47,362           | 39,468            |
| 0,3000 | -0,350    | -2,849    | 8,14  | 34,206           | 26,312            |
| 0,5000 | -0,268    | -3,732    | 13,92 | 23,681           | 15,788            |

Предельные значения параметров СПУ

Численные расчеты показали, что при росте значений k уменьшается размер отрезка  $a'_{\rm CHY}$ , что ограничивает возможность получения требуемого заднего фокального отрезка, а также расширяется область значений  $\beta_{\rm CHY}$ , в которой возрастают отрицательные значения d. Выбор благоприятных соотношений параметров СПУ зависит от требований, предъявляемых к параметрам объектива, а также от величины выноса главных плоскостей во второй группе СПУ.

В связи с этим проведены исследования и предложена методика расчета положительной группы линз с отрицательным или близким к нулю значением  $S_{IV}$ , а также с вынесенными вперед главными плоскостями. Методика и примеры расчета группы линз с такими свойствами приведены в работе [12]. Один из возможных вариантов данной системы, реализован при разработке оптической схемы объектива.

Полученные результаты использованы на этапе оптимизации конструктивных параметров объектива.

Исследования в области аберрационного расчета. Для поиска оптимального решения оптической схемы панкратического объектива проведен параметрический синтез вариантов объектива с применением различных моделей оценочных функций с использованием подпрограмм оптимизации пакетов прикладных программ ZEMAX [13] и OPAL, которые позволяют проводить анализ и оптимизацию панкратических (многоконфигурационных) систем. В программе ZEMAX имеется возможность использования Наттег-оптимизации с заменой марок оптического стекла. В этом случае осуществляется дискретный выбор стекол из заданного каталога, что может быть использовано при переходе от оптического стекла зарубежных марок к стеклам из российского каталога.

В программах имеется возможность комплексной оценки качества изображения оптических систем по таким критериям, как среднеквадратичный (СКВ) радиус пятна рассеяния и полихроматическая модуляционная передаточная функция (МПФ).

Учитывая, что методы задания асферических поверхностей (АП) в программах различны, был проведен сравнительный аберрацион-

ный анализ одного и того же варианта объектива (1S12S71) в двух программах. Кроме того, для указанного варианта выполнен расчет МПФ в программе ZEMAX и аналогичной частотно-контрастной характеристики (ЧКХ) в программе OPAL. Результаты расчета (табл. 5) показали близкие значения, полученные по этим программам.

Таблица 5

| Название характеристики                                             | Значение по | программе | Несоответствие |
|---------------------------------------------------------------------|-------------|-----------|----------------|
| или аберрации                                                       | OPAL        | ZEMAX     | результатов, % |
| Минимальное фокусное расстоя-                                       | 3,2571      | 3,2571    | 0              |
| ние $f'$ , мм                                                       |             |           |                |
| Задний фокальный отрезок s' <sub>F'</sub> , мм                      | 0,9995      | 0,9995    | 0              |
| Сферическая аберрация:                                              |             |           |                |
| $\Delta \mathbf{s}'(m=1)$                                           | -0,0096     | -0,0091   | 5,2            |
| $\Delta y'(m=1)$                                                    | -0,0019     | -0,0018   | 5,2            |
| Астигматические отрезки:                                            |             |           |                |
| $z'_m(\omega = 32^\circ)$                                           | -0,0243     | -0,0206   | 15,2           |
| $z'_s(\omega = 32^\circ)$                                           | -0,0400     | -0,0402   | 0,5            |
| Дисторсия $\Delta y'_{\mu}$ ( $\omega = 32^{\circ}$ )               | -5,13       | -5,03     | 2,0            |
| Хроматизм положения $\Delta s'_{\lambda 1 \lambda 2}$               | -0,0024     | -0,0024   | 0              |
| (m-0)                                                               | 0.0043      | 0.0044    | 2.2            |
| $(m = 0, ω = 32^\circ)$                                             | 0,0043      | 0,0044    | 2,5            |
| MΠΦ $T_0$ ( $\nu = 120 \text{ мm}^{-1}$ , $\omega = 0^\circ$ )      | 0,66        | 0,66      | 0              |
| МПФ $T_m/T_s$ ( $\nu = 120 \text{ мм}^{-1}$ , $\omega = 17^\circ$ ) | 0,07/0,47   | 0,11/0,48 | 4,0/1,0        |
| MΠΦ $T_m/T_s$ (v = 120 MM <sup>-1</sup> , ω = 24°)                  | 0,03/0,21   | 0,07/0,28 | 4,0/7,0        |
| MΠΦ $T_m/T_s$ (v = 120 mm <sup>-1</sup> , ω = 32°)                  | 0,08/0,26   | 0,07/0,32 | 1,0/6,0        |

#### Результаты расчетов объектива-аналога в программах ОРАL И ZEMAX

Особенности автоматизированной коррекции аберраций по программе OPAL. В качестве исходного варианта использован модифицированный вариант оптической схемы, полученный на этапе габаритного расчета. Форма асферических поверхностей задана такой же, как в объективе-аналоге.

В процессе работы был разработан ряд оптимизационных моделей и проведен параметрический синтез. В качестве параметров взяты радиусы кривизны, за исключением радиусов кривизны головной призмы и фильтра, переменные воздушные промежутки  $d_8$ ,  $d_{11}$ ,  $d_{16}$ , а также эксцентриситеты (ES2, ES10, ES19) и коэффициенты уравнений асферических поверхностей. При отсутствии ограничений на минимальные значения воздушных промежутков  $d_8$ ,  $d_{11}$ ,  $d_{16}$ , в процессе оптимизации один из воздушных промежутков становился отрицательным. Это же явление имело место при задании ограничений на воздушные промежутки в виде неравенства D < (8, 14, 16) = 0,3. Более жестко удерживались значения воздушных промежутков при задании ограничений в виде совокупности операторов, позволяющих применять метод штрафных функций, INF(1-3)=D/8,D/14,D/16; INF<(1-3)=0,3; INFT(1-3)=0,005. Фокусное расстояние и положение плоскости изображения удерживались постоянными с помощью операторов VG0/1–21/FN\*, SG'/21/N\*.

Для трех фокусных расстояний (минимального, среднего и максимального) проводили исправление поперечных аберраций в осевом пучке лучей: сферическая аберрация (DYA) на краю и в зоне входного зрачка (лучи 01 и 03), сферохроматическая аберрация в зоне зрачка (DYA/0'3). В наклонных пучках лучей для края поля ( $\omega_{max}$ ) и зоны поля ( $\omega = 0,707\omega_{max}$ ) исправляли аберрации узкого пучка лучей: астигматические отрезки для меридионального  $z'_m$  и сагиттального  $z'_s$ сечений, хроматическая аберрация увеличения и дисторсия. В меридиональном сечении наклонных пучков исправляли аберрации для верхней и нижней части зрачка (пучка лучей) как минимум для двух зон зрачка.

Практика показала, что при оптимизации необходимо задавать желаемое значение дисторсии, отличное от нуля. В противном случае трудно получить оптимальное решение.

Различные варианты оптимизаторов, отличающиеся количеством лучей в осевом и наклонных пучках, а также требованиями к значениям исправляемых аберраций, были опробованы в процессе поиска оптимального варианта оптической схемы объектива. Исследования показали, что более эффективным является сочетание двух методов оптимизации: на начальном этапе — оптимизация по ограниченному количеству геометрических аберраций, а на конечном этапе — переход к оптимизации по волновым аберрациям.

Эффективными параметрами коррекции аберраций являются параметры АП как эксцентриситеты, так и коэффициенты уравнений высшего порядка.

Результаты аберрационного расчета одного из вариантов разработанного объектива представлены далее.

Особенности автоматизированной коррекции аберраций по программе ZEMAX. Световые диаметры линз панкратического объектива изменяются в зависимости от фокусного расстояния объектива. В связи с этим требуется провести расчет значений световых диаметров для всех положений групп объектива и выбора максимальных значений. В программе ZEMAX эта процедура реализована через функцию Maximum при задании световых высот поверхностей схемы.

Замена материалов, заданных в исходной схеме значениями показателя преломления и числом Аббе, на марки оптического стекла из российского каталога осуществлена с использованием встроенного в программу модуля Glass Catalogue (каталог стекла).

В качестве параметров оптимизации использованы кривизны всех поверхностей объектива, а также коэффициенты четвертого, шестого и восьмого порядков уравнений, описывающих профили АП. При автоматизированной коррекции по программе ZEMAX квадрат эксцентриситета не изменяли, он был задан равным нулю, как и в исходной схеме. Изменения радиусов кривизны приводят к перераспределению оптических сил между компонентами панкратического объектива, что влечет изменение масштаба изображения и фокусных расстояний, в результате необходима корректировка законов перемещения подвижных групп линз. В связи с этим в качестве параметров оптимизации использованы также воздушные промежутки схемы и толщины линз по оси. Осевые толщины призмы и защитной плоскопараллельной пластинки приемника излучения остались без изменения.

Оценочная функция оптимизационной модели строится на основе ряда функций-ограничений на оптические и габаритные характеристики, а также функций, связанных с показателями качества оптической системы.

Ограничения введены на минимальные толщины по оси и краю линз и воздушных промежутков и продольную длину системы для всего диапазона изменения фокусного расстояния объектива. Поскольку первая и четвертая группы линз неподвижны, общая длина системы от первой поверхности до плоскости изображения остается неизменной и составляет L = 35,9 мм. Указанное условие задано в программе с помощью оператора TOTR. Требуемые значения фокусных расстояний объектива для широкоугольного, среднего и длиннофокусного положений компонентов задаются в оптимизационной модели с помощью оператора EFFL.

Основную роль в создании оценочной функции оптимизационной модели выполняют операторы, использующие критерии оценки качества изображения. Программа ZEMAX, как и программа OPAL, позволяет строить такую модель на основе геометрических и волновых аберраций.

Особенностью программы ZEMAX является использование марок, описывающих СКВ-размеры пятен рассеяния, т. е. интегральный

критерий оценки. Для контроля дисторсии в оптимизационной модели программы ZEMAX задают ограничения на ее значения. Максимальное значение дисторсии, равное 4,2 %, задавали с помощью оператора DIMX для минимального и максимального фокусных расстояний объектива.

Использование геометрического и волнового критериев оценки качества изображения приводит к построению принципиально разных оценочных функций. Рассмотрены четыре варианта построения оптимизационной модели с различными оценочными функциями. Вариант оптической схемы SPOT(ZEMAX) получен при оптимизации исходной схемы по геометрическим аберрациям, вариант OPD(ZEMAX) — оптимизацией по волновым аберрациям (англ. *OPD* — Optical Path Difference — волновая аберрация), вариант OPD-Hammer (ZEMAX) — с помощью Натегоптимизации по волновым аберрациям. Натегоптимизация исходной схемы по геометрическим аберрациям не привела к улучшению ее аберрационной коррекции.

Оценка качества изображения исходной схемы и полученных вариантов проведена с использованием таких критериев, как СКВ-радиус пятна рассеяния и значение полихроматической МПФ для меридиональной и сагиттальной ориентации штрихов на пространственной частоте  $v = 120 \text{ мm}^{-1}$  (табл. 6, 7). Выбранное значение частоты соответствует частоте Найквиста многоэлементного приемника излучения с размерами отдельной светочувствительной ячейки (пиксела) 4,2×4,2 мкм.

При использовании оптимизации по геометрическим аберрациям удалось добиться уменьшения СКВ-размеров пятна рассеяния во всем диапазоне изменения фокусного расстояния. Полученные в результате оптимизации СКВ-радиусы пятен рассеяния соизмеримы с радиусом кружка Эйри.

Однако контраст изображения нельзя считать оптимальным. Оптимизация с использованием волновых аберраций приводит к значительному росту СКВ- и геометрических размеров пятен рассеяния. Дисторсия при этом также возрастает до +4 % в длиннофокусном положении. Анализ поведения графиков МПФ показывает эффективность оптимизации по волновым аберрациям для улучшения контраста в изображении для низких и высоких ( $v = 120 \text{ мm}^{-1}$ ) пространственных частот. Кроме того, достижение окончательного решения при использовании волнового критерия потребовало около 40 циклов оптимизации, в то время как поиск минимума оценочной функции, построенной на геометрических аберрациях, занял более 500 циклов. Это свидетельствует о высокой сходимости процесса оптимизации на основе волновых аберраций.

Таблица 6

СКВ-радиус пятна рассеяния, мкм, объективов для трехфокусных расстояний в зависимости от углового поля

|                    |      |                           | 12,1 | 6,85             | 3,29         | 31,46       | 24,18              |
|--------------------|------|---------------------------|------|------------------|--------------|-------------|--------------------|
|                    | 9,75 |                           | 8,4  | 3,40             | 1,71         | 24,50       | 19,20              |
|                    |      |                           | 0    | 1,43             | 1,24         | 18,40       | 4,11               |
|                    |      |                           | 21,1 | 10,38            | 3,14         | 19,77       | 14,48              |
| ояние $f^{\prime}$ | 4    | ю, град                   | 18,2 | 11,09            | 3,61         | 18,49       | 13,76              |
| сное расст         | 5,6  | овое поле (               | 14,6 | 8,48             | 3,21         | 17,66       | 13,55              |
| Фоку               | Фоку | $\mathbf{y}_{\Gamma \Pi}$ | 0,0  | 4,09             | 2,26         | 15,17       | 2,40               |
|                    |      |                           | 32,1 | 6,89             | 3,30         | 5,47        | 4,04               |
|                    | 25   |                           | 27,5 | 4,73             | 2,78         | 5,83        | 3,85               |
|                    | 3,2  |                           | 22,4 | 5,15             | 3,44         | 6,99        | 3,88               |
|                    |      |                           | 0,0  | 1,32             | 1,92         | 10,18       | 4,80               |
|                    | D    | Бариант                   |      | Исходный (ZEMAX) | SPOT (ZEMAX) | OPD (ZEMAX) | OPD Hammer (ZEMAX) |

Таблица 7

Значения МПФ (меридиональные/саггитальные) объективов для трех фокусных расстояний

на пространственной частоте v = 120 мм<sup>-1</sup>

|                    |      |           |           | Фоку                    | исное расстоян | не <i>f</i> ′ |      |           |             |
|--------------------|------|-----------|-----------|-------------------------|----------------|---------------|------|-----------|-------------|
| Ę                  |      | 3,25      |           |                         | 5,64           |               |      | 9,75      |             |
| Бариант            |      |           |           | $\mathbf{y}_{\Gamma I}$ | ювое поле ю, т | град          |      |           |             |
|                    | 0,0  | 22,4      | 32,1      | 0,0                     | 14,6           | 21,1          | 0    | 8,4       | 12,1        |
| Исходный (ZEMAX)   | 0,65 | 0,08/0,26 | 0,12/0,29 | 0,12                    | 0,13/0,46      | 0,28/0,56     | 0,52 | 0,30/0,47 | 0,27/0,39   |
| SPOT (ZEMAX)       | 0,43 | 0,15/0,71 | 0,20/0,63 | 0,60                    | 0,34/0,58      | 0,25/0,60     | 0,57 | 0,48/0,54 | 0,19/0,54   |
| SPOT (OPAL)        | 0,20 | 0,16/0,63 | 0,16/0,65 | 0,63                    | 0,21/0,56      | 0,37/0,57     | 0,50 | 0,41/0,48 | 0,10/0,47   |
| OPD (ZEMAX)        | 0,66 | 0,39/0,63 | 0,46/0,63 | 0,35                    | 0,42/0,51      | 0,35/0,50     | 0,43 | 0,32/0,40 | 0,16/0,41   |
| OPD Hammer (ZEMAX) | 0,57 | 0,43/0,59 | 0,43/0,55 | 0,48                    | 0,34/0,45      | 0,40/0,50     | 0,35 | 0,33/0,37 | 0,34/0,40   |
| OPT (OPAL)         | 0,67 | 0,49/0,59 | 0,46/0,61 | 0,61                    | 0,32/0,42      | 0,48/0,53     | 0,51 | 0,46/0,49 | 0, 19/0, 44 |

Наттег-оптимизация исходной схемы по геометрическим аберрациям не привела к улучшению аберрационной коррекции объектива, а в результате Наттег-оптимизации по волновому критерию достигнуто определенное улучшение качества изображения исходного варианта. Однако, целесообразность Наттег-оптимизации необходимо оценивать после рассмотрения возможности применения выбранных марок оптических стекол.

Оценка результатов аберрационного расчета объектива. Поскольку аберрационную коррекцию в программе OPAL проводили по геометрическим аберрациям и при этом задавали численные значения отдельных аберраций, то представляет интерес рассмотрение их окончательных значений и сопоставление с такими интегральными критериями качества, как ЧКХ и распределение энергии в пятне рассеяния.

Графики продольной и поперечной сферической аберраций для точки на оси приведены на рис. 2, а графики узкого пучка лучей — на рис. 3.



**Рис. 2.** Поперечные (*a*) и продольные (б) аберрации осевого пучка лучей панкратического объектива (7112RD5) для трех фокусных расстояний



**Рис. 3.** Аберрации узкого пучка лучей панкратического объектива (7112RD5) для трех фокусных расстояний

Исследовав данные графиков аберраций и результаты аберрационного расчета, видим, что поперечная сферическая аберрация во всем диапазоне изменения фокусного расстояния не превышает 0,013 мм. Дисторсия изменяется в пределах значений -5,0...-2,5 %, значения  $z'_m$  астигматических отрезков в меридиональном сечении пучка не превышают -0,048 мм на краю поля и +0,065 мм в зоне поля, а в сагиттальном сечении соответственно +0,033 мм и +0,019 мм.

К недостаткам аберрационной коррекции следует отнести наличие провала в графиках зависимости астигматических отрезков в зоне поля  $\omega = 0,5\omega_{max}$ , что приводит к падению контраста в зоне поля  $\omega = 0,5\omega_{max}$ . Более полное представление о качестве изображения дают модуляционные передаточные функции (МПФ–ЧКХ), приведенные на рис. 4, 5.

Согласно анализу ЧКХ, на частоте  $120 \text{ мм}^{-1}$  контраст для точки на оси находится в пределах значений 0,67...0,51 во всем диапазоне



Рис. 4. Модуляционные передаточные функции (ЧКХ) панкратического объектива (7112RD5) при минимальном фокусном расстоянии (f' = 3,34 мм): a — ЧКХ для точки на оси ( $\omega = 0$ );  $\overline{o}$  — ЧКХ для точки вне оси ( $\omega = \omega_{max}$ );  $\overline{o}$  — ЧКХ для точки вне оси ( $\omega = 0,5\omega_{max}$ )

изменения фокусного расстояния. Для точки вне оси на краю поля ( $\omega = \omega_{max}$ ) для максимального фокусного расстояния значения контраста выше 0,19. Для среднего фокусного расстояния на указанной частоте в зоне поля ( $\omega = 0,5\omega_{max}$ ) отмечается падение контраста до 0,10 ввиду наличия остаточного астигматизма.

Анализ распределения энергии в пятне рассеяния показал, что в пятне размером 8,6 мкм на оси заключается 90...96 % энергии; на краю поля ( $\omega = \omega_{max}$ ) и в зоне поля ( $\omega = 0,5\omega_{max}$ ) — 70...85 % для всего диапазона изменения фокусного расстояния.



Рис. 5. Модуляционные передаточные функции (ЧКХ) панкратического объектива (7112RD5) для максимального фокусного расстояния (f' = 9,17 мм): a — ЧКХ для точки на оси ( $\omega = 0$ );  $\overline{o}$  — ЧКХ для точки вне оси ( $\omega = \omega_{max}$ );  $\overline{o}$  — ЧКХ для точки вне оси ( $\omega = 0,5\omega_{max}$ )

Расчетно-технологические аспекты изготовления асферических поверхностей. Технологичность АП схем, полученных после оптимизации в программах ZEMAX и OPAL, подтверждается данными, которые являются результатом расчетов профилей поверхностей в программе ZEMAX (табл. 8, 9). Для всех указанных АП объектива SPOT показатель преломления стекла линз составляет 1,744; марка стекла асферической линзы — СТК19, квадрат эксцентриситета ( $e^2 = -k$ ) имеет нулевое значение, порядок АП соответствует восьми.

## Таблица 8

Технологические параметры АП объектива SPOT (ZEMAX)

| Параметр АП                      | Номер асферической поверхности<br>в оптической схеме |                        |                        |  |
|----------------------------------|------------------------------------------------------|------------------------|------------------------|--|
|                                  | Nº 2                                                 | <b>№</b> 10            | Nº 19                  |  |
| Радиус кривизны при вершине, мм  | 4,944                                                | 4,047                  | -16,832                |  |
| Световой диаметр, мм             | 7,2                                                  | 4,6                    | 4,3                    |  |
| Тип поверхности                  | Вогнутая                                             | Выпуклая               | Выпуклая               |  |
| Коэффициент задающего уравнения: |                                                      |                        |                        |  |
| $\alpha_1$                       | 0                                                    | 0                      | 0                      |  |
| $\alpha_2$                       | $-1,824 \cdot 10^{-4}$                               | $-9,192 \cdot 10^{-4}$ | $6,807 \cdot 10^{-4}$  |  |
| $\alpha_3$                       | $-2,328 \cdot 10^{-5}$                               | $-2,823 \cdot 10^{-5}$ | $2,366 \cdot 10^{-4}$  |  |
| $lpha_4$                         | $-5,577 \cdot 10^{-8}$                               | $-2,212 \cdot 10^{-6}$ | $-2,727 \cdot 10^{-5}$ |  |
| Максимальное отступление от бли- | 17,2                                                 | 6,3                    | 7,0                    |  |
| жайшей сферы, мкм                |                                                      |                        |                        |  |
| Знакопеременное отступление      |                                                      | Нет                    |                        |  |

Таблица 9

## Технологические параметры АП объектива ОРТ (OPAL)

|                              | Номер ас               | ферической пов         | ерхности               |  |  |
|------------------------------|------------------------|------------------------|------------------------|--|--|
| Параметр АП                  | в оптической схеме     |                        |                        |  |  |
|                              | Nº 2                   | Nº 10                  | № 19                   |  |  |
| Радиус кривизны при вер-     | 5,462                  | 9,921                  | -7,205                 |  |  |
| шине, мм                     |                        |                        |                        |  |  |
| Световой диаметр, мм         | 7,2                    | 4,6                    | 4,4                    |  |  |
| Тип поверхности              | Вогнутая               | Выпуклая               | Выпуклая               |  |  |
| Показатель преломления стек- | 1,765                  | 1,744                  | 1,744                  |  |  |
| ла линзы                     |                        |                        |                        |  |  |
| Марка стекла                 | СТК20                  | СТК19                  | СТК19                  |  |  |
| Порядок АП                   | 12                     | 12                     | 12                     |  |  |
| Квадрат эксцентриситета,     | -0,114221              | -0,031085              | 17,00074               |  |  |
| $e^2 = -k$                   |                        |                        |                        |  |  |
| Коэффициент задающего        |                        |                        |                        |  |  |
| уравнения:                   |                        |                        |                        |  |  |
| $\alpha_1$                   | 0                      | 0                      | 0                      |  |  |
| $\alpha_2$                   | $1,690 \cdot 10^{-4}$  | $-8,908 \cdot 10^{-4}$ | $-1,652 \cdot 10^{-3}$ |  |  |
| α <sub>3</sub>               | $-1,605 \cdot 10^{-5}$ | $-1,767 \cdot 10^{-7}$ | $-6,000 \cdot 10^{-4}$ |  |  |
| $\alpha_4$                   | $9,207 \cdot 10^{-7}$  | $-1,642 \cdot 10^{-6}$ | $6,531 \cdot 10^{-5}$  |  |  |
| $\alpha_5$                   | $-3,116 \cdot 10^{-8}$ | $-2,133 \cdot 10^{-7}$ | $1,878 \cdot 10^{-6}$  |  |  |
| $\alpha_6$                   | $1,540 \cdot 10^{-9}$  | $-2,751 \cdot 10^{-7}$ | $6,869 \cdot 10^{-7}$  |  |  |
| Максимальное отступление от  | 7,9                    | 7,2                    | 4,9                    |  |  |
| ближайшей сферы, мкм         |                        |                        |                        |  |  |
| Знакопеременное отступление  |                        | Нет                    |                        |  |  |

Проанализировав полученные результаты (см. табл. 8, 9), можно сделать следующие выводы:

• все рассчитанные АП обеспечивают технологически выполнимые требования к максимальному отклонению от ближайшей сферы, которое не превышает 17,2 мкм;

• рассчитанные профили поверхностей обеспечивают отступление от ближайшей сферы одного знака, что также является более технологичным по сравнению со знакопеременными АП;

• при оптимизации в программе OPAL рассчитаны АП, описываемые полиномами 12-го порядка, которые задают отклонения от поверхностей второго порядка. Для рассчитанного варианта такие поверхности второго порядка также являются несферическими и задаются конической постоянной (эксцентриситетом);

• вариант объектива, полученный при оптимизации в программе ZEMAX, содержат АП восьмого порядка, причем коническая постоянная для всех рассчитанных поверхностей равна нулю.

Заключение. В результате проведенных исследований разработана оптическая схема малогабаритного панкратического объектива



Рис. 6. Оптическая схема панкратического объектива (7112RD5) для трех значений фокусного расстояния:

*а* — положение подвижных групп при фокусном расстоянии f' = 3,34 мм;  $\delta$  — положение подвижных групп при фокусном расстоянии f' = 5,67 мм;  $\epsilon$  — положение подвижных групп при максимальном фокусном расстоянии f' = 9,17 мм

перископического типа высокого качества на диагональ кадра 1/4" со следующими характеристиками: f' = 3,34 мм, M = 2,95, D/f' изменяется от 1:3 до 1:5,3, общая длина L = 37,1 мм, диаметр первой поверхности  $\emptyset_{1} = 8,6$  мм, диаметр последней поверхности  $\emptyset_{23} = 4$  мм, угол излома — 90°, расстояние до точки излома — 31,45 мм, разрешение — 150 мм<sup>-1</sup>. Оптическая схема объектива приведена на рис. 6.

Наиболее высокие характеристики качества достигнуты для объектива 7112RD0, в котором удалось добиться повышения минимального контраста до 0,38 на частоте 150 мм<sup>-1</sup> и устранить зональные провалы ЧКХ за счет уменьшения астигматических отрезков. При этом на последней поверхности получена более монотонная АП.

В результате проведенных исследований выработаны рекомендации построения оптимизационных моделей и показана эффективность проведения параметрического синтеза с помощью пакетов прикладных программ ZEMAX и OPAL, подтверждена сопоставимость полученных результатов расчета по данным программам при соблюдении международной формы записи АП. В качестве возможных областей применения данной схемы можно рекомендовать цифровую фотоаппаратуру, мобильные телефоны, ноутбуки, нетбуки, планшетные компьютеры.

# ЛИТЕРАТУРА

- [1] Matsusaka K. Konica Minolta Co. Ultracompact optical zoom lens for mobile phone. *Proc. of SPIE*, vol. 6502 650203-1...9.
- [2] Chir-Weei Chang. A compact and cost effective design for cell phone zoom lens. *Proc. of SPIE*, vol. 6667 666700-1...8.
- [3] Lenhardt K. Optics for Digital Photography. Proc. of SPIE, 2007, vol. 6834 68340W-1993.
- [4] Hagimori H., Yamamoto Y., Yagyu G., Ishimaru K. Imaging device and digital camera using the imaging device. Patent No. US6754446 B2 Minolta Co. Tokyo, Jun. 22, 2004.
- [5] Mihara S., Konishi H., Hanzawa T., Watanabe M., Ishii A., Takeyama T., Imamura A. *Electronic image pickup system*. Patent No. US7436599 B2 Olympus Optical Co. Tokyo, Oct. 14, 2008.
- [6] Mihara S., Imamura A. Zoom lens and electronic imaging system using the same. Patent No. US7177094 B2 Olympus Optical Co. Tokyo, Feb. 13, 2007.
- [7] Saory M. Zoom lens system. Patent No. US7417800 B2 Hoya Corp., Tokyo, Aug. 26, 2008.
- [8] Mihara S. Zoom lens and electronic imaging system using the same. Patent No. US7375902 B2 Olympus Optical Co. Tokyo, May 20, 2008.
- [9] Arai D. Zoom lens system. Patent No. US7561342 B2 Nikon Corporation, Tokyo, Jul. 14, 2009.
- [10] Tamura M. Zoom lens and imaging device. Patent No. US7327953 B2 Sony Co, Tokyo, Feb. 5, 2008.
- [11] Поспехов В.Г., Дягилева А.В. Габаритный и аберрационный расчет панкратических окуляров. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2005.

- [12] Поспехов В.Г., Дягилева А.В., Мельникова Е.М. Панкратический объектив, включающий группу с заданными свойствами. *Тр. Междунар. конф. «Прикладная оптика 2010»*, т. 1, с. 74–79.
- [13] ZEMAX Optical Design Program. User's Guide. Version February 22, 2008. ZEMAX Development Co., 2008, 732 p.

Статья поступила в редакцию 24.06.2013

Ссылку на эту статью просим оформлять следующим образом:

Поспехов В.Г., Крюков А.В. Исследование и расчет малогабаритного панкратического объектива перископического типа. Инженерный журнал: наука и инновации, 2013, вып. 7. URL: http://engjournal.ru/catalog/pribor/optica/826.html

Поспехов Вячеслав Георгиевич родился в 1937 г., окончил МГТУ им. Н.Э. Баумана в 1961 г. Канд. техн. наук, доцент кафедры «Оптико-электронные приборы научных исследований» МГТУ им. Н.Э. Баумана. Автор более 50 научных работ в области расчета оптических систем. e-mail: vychposp@yandex.ru

Крюков Александр Владимирович родился в 1973 г., окончил МГТУ им. Н.Э. Баумана в 1998 г. Канд. техн. наук, доцент кафедры «Оптико-электронные приборы научных исследований» МГТУ им. Н.Э. Баумана. Автор более 30 научных работ в области расчета оптических систем. e-mail: alex\_krioukov@mail.ru