Синтез длиннофокусного зеркально-линзового объектива

С.В. Бодров¹

¹ МГТУ им. Н.Э. Баумана, Москва, Россия.

Рассмотрена методика расчета длиннофокусного зеркально-линзового объектива, содержащего главное сферическое вогнутое зеркало, зеркало Манжена и двухлинзовый компенсатор.

E-mail:rl-3@mx.bmstu.ru

Ключевые слова: зеркально-линзовый объектив, зеркало Манжена, синтез, оптимизация, функция передачи модуляции.

В работе [1] представлена методика расчета длиннофокусного зеркально-линзового фотографического объектива. Его оптическая схема состояла из менисковой линзы, вогнутого главного зеркала, выпуклого контрзеркала и однолинзового компенсатора, расположенного вблизи плоскости изображения в сходящемся пучке лучей (рис. 1, а). Это максимально простая из возможных оптических схем для подобных систем. Нелостатком данного объектива является наличие заметных остаточных аберраций, особенно на краю поля, которые приводят к снижению качества изображения. Так, например, в рассчитанном по предложенной методике объективе контраст по уровню 0,3 наблюдался для осевой точки изображения на частоте 70 мм⁻¹, а на краю поля такой же контраст соответствовал частоте всего 40 мм⁻¹. Повышения качества изображения подобной оптической системы можно добиться, если контрзеркало выполнить в виде зеркала Манжена (рис. 1, б). При этом количество оптических компонентов схемы останется прежним и не вызовет усложнения конструкции объектива.

В данной работе рассмотрена методика расчета длиннофокусного зеркально-линзового объектива с фокусным расстоянием 2 000 мм, оптическая схема которого состоит из вогнутого главного зеркала, контрзеркала в виде зеркала Манжена и двухлинзового компенсатора (рис. 2). Расположение линзовых компонентов в оптической системе аналогично тому, которое было использовано в схеме объектива, рассмотренного в работе [1].

На начальном этапе расчета объектива линзы компенсатора считаем бесконечно тонкими. Исходными данными являются следующие величины: $d_{\rm I}$ — расстояние между главными плоскостями первой менисковой линзы и вершиной главного зеркала; $d_{\rm II}$ — расстояние между вершиной главного зеркала и главными плоскостями зеркала Манжена; $d_{\rm III}$ — расстояние между главными плоскостями зеркала Манжена; $d_{\rm III}$ — расстояние между главными плоскостями зеркала Манжена; $d_{\rm III}$ — расстояние между главными плоскостями зеркала Манжена и второй коррекционной линзы; c — вынос изображения за вершину главного зеркала; η — коэффициент линейного экранирования; n_2 , n_8 и ν_2 , ν_8 — показатели преломления и коэффициенты дисперсии материалов первой и второй линз компенсатора соответственно; n_6 и ν_6 — показатель преломления и коэффициент дисперсии материала зеркала Манжена; $S_{\rm I}$, $S_{\rm II}$, $S_{\rm IV}$, $S_{\rm Ixp}$ — требуемые значения первой, второй, четвертой и первой хроматической сумм Зейделя.

Рис. 1. Схема оптической системы зеркально-линзового объектива: *а* — с сферическим контрзеркалом; *б* — с контрзеркалом в виде зеркала Манжена

Рис. 2. Схема, выбранная для синтеза длиннофокусного зеркальнолинзового объектива

Расчет исходного варианта системы начинается с вычисления заднего фокального отрезка объектива $a'_{F'} = c - d_{II} - d_{III}$, величине которого равна высота первого вспомогательного луча на главных плоскостях второй линзы компенсатора $h_V = a'_{F'}$. Затем находится значение оптической силы второй линзы компенсатора

$$\Phi_{\rm V}=\frac{1-\alpha_7}{a'_{F'}},$$

где $\alpha_7 = \frac{\eta - a'_{F'}}{d_{\mathrm{III}}}$.

Для продолжения расчета необходимо вычислить ряд вспомогательных коэффициентов, которые получены из уравнений, выражающих условия масштаба и получения требуемых значений сумм Зейделя S_{IV}, S_{Ixp} [2—4]:

$$\delta_{1} = \frac{1}{v_{2}}; \quad \delta_{2} = \frac{2\eta^{2}}{v_{6}}; \quad \delta_{3} = \frac{a_{F'}^{\prime 2} \Phi_{V}}{v_{8}} + S_{Ixp};$$
$$\delta_{4} = \frac{1 - \eta}{d_{II}}; \quad \delta_{5} = \frac{d_{I}}{d_{II}}; \quad \delta_{6} = \delta_{5} - 1;$$
$$\delta_{7} = \frac{1}{n_{2}}; \quad \delta_{8} = \frac{2}{n_{6}}; \quad \delta_{9} = \frac{\Phi_{V}}{n_{8}} - S_{IV};$$

$$\delta_{10} = d_1 \left(\delta_1 \delta_8 - \delta_2 \delta_7 \right); \quad \delta_{11} = \delta_2 \left(\delta_7 - \delta_6 \right) + d_1 \left(\delta_3 \delta_8 - \delta_2 \delta_9 \right) - \delta_1 \delta_8;$$

$$\delta_{12} = \delta_2 \left(\delta_4 + \delta_9 \right) - \delta_3 \delta_8; \quad \delta_{13} = \delta_4 + \alpha_7.$$

Оптическая сила первой менисковой линзы находится при решении следующего квадратного уравнения:

$$A \Phi_{\mathrm{I}}^2 + B \Phi_{\mathrm{I}} + C = 0, \tag{1}$$

где

$$A = \eta \delta_{10} + d_I \left(2\eta \delta_1 - \delta_2 \delta_5 \right);$$

$$B = \eta \left(\delta_{11} - 2\delta_1 \right) + d_I \left(2\eta \delta_3 + \delta_2 \delta_{13} \right) + \delta_2 \delta_5;$$

$$C = \eta \left(\delta_{12} - 2\delta_3 \right) - \delta_2 \delta_{13}.$$

Далее вычисляются оптические силы всех оставшихся компонентов системы и радиусы кривизны главного зеркала (r_3) и отражающей поверхности зеркала Манжена (r_5) :

$$\Phi_{\rm II} = \frac{\Phi_{\rm I}\delta_6 - \delta_4}{1 - \Phi_{\rm I}d_{\rm I}}; \quad \Phi_{\rm III} = -\frac{\Phi_{\rm I}\delta_{\rm I} + \delta_3}{\delta_2}; \quad \Phi_{\rm IV} = \frac{\Phi_{\rm I}^2\delta_{\rm I0} + \Phi_{\rm I}\delta_{\rm I1} + \delta_{\rm I2}}{\delta_2\left(1 - \Phi_{\rm I}d_{\rm I}\right)}; \\ r_3 = -\frac{2}{\Phi_{\rm II}}; \quad r_5 = \frac{2}{\Phi_{\rm IV}}.$$

Значения углов и высот первого вспомогательного луча, необходимые для дальнейших вычислений, находятся по следующим формулам [5]:

$$\alpha_{1} = 0; \quad h_{I} = 1;$$

$$\alpha_{3} = \Phi_{I}; \quad h_{II} = 1 - \Phi_{I}d_{I};$$

$$\alpha_{4} = \delta_{4} - \Phi_{I}\delta_{5}; \quad h_{III} = h_{IV} = \eta;$$

$$\alpha_{5} = \frac{\alpha_{4}}{n_{6}} - \frac{(1 - n_{6})\eta}{n_{6}r_{4}};$$

$$\alpha_{6} = \frac{2\eta}{r_{5}} - \alpha_{5};$$

$$\alpha_{9} = 1.$$

В подобных зеркально-линзовых объективах апертурной диафрагмой обычно является оправа главного зеркала, тогда углы и высоты второго вспомогательного луча определяются следующими выражениями:

$$H_{\rm I} = a_p = \frac{d_{\rm I}}{h_{\rm II}}; \quad \beta_3 = \frac{1}{h_{\rm II}};$$
$$H_{\rm II} = 0; \quad \beta_4 = -\beta_3;$$
$$H_{\rm III} = H_{\rm IV} = \frac{d_{\rm II}}{h_{\rm II}};$$
$$\beta_7 = \frac{1 + d_{\rm II} \left(2\Phi_{\rm III} + \Phi_{\rm IV}\right)}{h_{\rm II}}; \quad H_{\rm V} = \frac{d_{\rm II}}{h_{\rm II}} - \beta_7 d_{\rm III}.$$

Аберрационные параметры главного зеркала (P_3 , W_3) и зеркала Манжена (P_4 , P_5 , P_6 , W_4 , W_5 , W_6) вычисляются по известным формулам [5]:

$$P_{3} = -\frac{(\alpha_{4} - \alpha_{3})^{2}(\alpha_{4} + \alpha_{3})}{4}; \quad W_{3} = \frac{\alpha_{4}^{2} - \alpha_{3}^{2}}{2};$$

$$P_{4} = \frac{(\alpha_{5} - \alpha_{4})^{2}(\alpha_{5}\mu_{5} + \alpha_{4})}{(\mu_{5} + 1)^{2}}; \quad W_{4} = \frac{(\alpha_{5} - \alpha_{4})(\alpha_{5}\mu_{5} + \alpha_{4})}{\mu_{5} + 1};$$

$$P_{5} = \frac{(\alpha_{6} - \alpha_{5})^{2}(\alpha_{6} + \alpha_{5})}{4\mu_{6}}; \quad W_{5} = \frac{\alpha_{6}^{2} - \alpha_{5}^{2}}{2};$$

$$P_{6} = \frac{(\alpha_{7} - \alpha_{6})^{2}(\alpha_{7} - \alpha_{6}\mu_{6})}{(1 - \mu_{6})^{2}}; \quad W_{6} = \frac{(\alpha_{7} - \alpha_{6})(\alpha_{7} - \alpha_{6}\mu_{6})}{1 - \mu_{6}}.$$

Свободными параметрами остаются два угла α_2 и α_8 первого вспомогательного луча, которые определяют форму линзовых компонентов объектива. Их значения находятся из условия получения заданных значений первой и второй сумм Зейделя решением системы уравнений:

$$\begin{cases} \alpha_{2}^{3}\delta_{42} + \alpha_{2}^{2}\delta_{19} - \alpha_{2}\delta_{18} + \alpha_{8}^{3}\delta_{43} + \alpha_{8}^{2}\delta_{44} + \alpha_{8}\delta_{45} + \delta_{46} = 0; \\ \alpha_{2}^{3}\delta_{48} + \alpha_{2}^{2}\delta_{49} - \alpha_{2}\delta_{50} + \alpha_{8}^{3}\delta_{51} + \alpha_{8}^{2}\delta_{52} + \alpha_{8}\delta_{53} + \delta_{54} = 0. \end{cases}$$
(2)

Предварительно находят значения следующих вспомогательных коэффициентов:

$$\begin{split} \delta_{14} &= \mu_2 \left(\mu_2 - 1\right)^{-2}; \ \delta_{15} = \mu_2 \left(\mu_2 - 1\right)^{-1}; \ \delta_{16} = \left(1 - \mu_2\right)^{-2}; \ \delta_{17} = \Phi_1^3 \delta_{16}; \\ \delta_{18} &= \Phi_1^2 \delta_{16} \left(2 + \mu_2\right); \ \delta_{19} = \Phi_1 \delta_{16} \left(1 + 2\mu_2\right); \ \delta_{20} = \delta_{16} \mu_2; \ \delta_{21} = \left(1 - \mu_2\right)^{-1}; \\ \delta_{22} &= \Phi_1^2 \delta_{21}; \ \delta_{23} = \Phi_1 \delta_{21} \left(\mu_2 + 1\right); \ \delta_{24} = \delta_{21} \mu_2; \ \delta_{25} = \left(\mu_8 - 1\right)^{-2}; \\ \delta_{26} &= \delta_{25} \mu_8; \ \delta_{27} = \alpha_7 \delta_{25} \left(2\mu_8 + 1\right); \ \delta_{28} = \alpha_7^2 \delta_{25} \left(\mu_8 + 2\right); \ \delta_{29} = \alpha_7^3 \delta_{25}; \end{split}$$

$$\begin{split} \delta_{30} &= (\mu_8 - 1)^{-1}; \ \delta_{31} = \delta_{30}\mu_8; \ \delta_{32} = \alpha_7\delta_{30} \left(1 + \mu_8\right); \ \delta_{33} = \alpha_7^2\delta_{30}; \\ \delta_{34} &= \left(1 - \mu_8\right)^{-2}; \ \delta_{35} = \delta_{34} \left(2 + \mu_8\right); \ \delta_{36} = \delta_{34} \left(1 + 2\mu_8\right); \ \delta_{37} = \delta_{34}\mu_8; \\ \delta_{38} &= \left(1 - \mu_8\right)^{-1}; \ \delta_{39} = \delta_{38} \left(1 + \mu_8\right); \ \delta_{40} = \delta_{38}\mu_8; \ \mu_2 = n_2^{-1}; \\ \mu_8 &= n_8^{-1}; \ \delta_{41} = h_{II}P_3 + h_{III} \left(P_4 + P_5 + P_6\right) - S_I; \ \delta_{42} = \left(\delta_{14} - \delta_{20}\right); \\ \delta_{43} &= h_V \left(\delta_{26} - \delta_{37}\right); \ \delta_{44} = h_V \left(\delta_{36} - \delta_{27}\right); \ \delta_{45} = h_V \left(\delta_{28} - \delta_{35}\right); \\ \delta_{46} &= \delta_{17} + \delta_{41} + h_V \left(\delta_{34} - \delta_{29}\right); \\ \delta_{47} &= H_{III} \left(P_4 + P_5 + P_6\right) + W_3 + W_4 + W_5 + W_6 - S_{II}; \\ \delta_{48} &= H_1 \left(\delta_{14} - \delta_{20}\right); \ \delta_{49} &= H_1\delta_{19} + \delta_{15} + \delta_{24}; \ \delta_{50} &= H_1\delta_{18} + \delta_{23}, \\ \delta_{51} &= H_V \left(\delta_{26} - \delta_{37}\right); \ \delta_{52} &= H_V \left(\delta_{36} - \delta_{27}\right) + \delta_{31} + \delta_{40}; \\ \delta_{53} &= H_V \left(\delta_{28} - \delta_{35}\right) - \delta_{32} - \delta_{39}; \\ \delta_{54} &= H_1\delta_{17} + H_V \left(\delta_{34} - \delta_{29}\right) + \delta_{22} + \delta_{33} + \delta_{38} + \delta_{47}, \end{split}$$

где *H*_I, *H*_{II}, *H*_{III} и *H*_V — высоты второго вспомогательного луча на главных плоскостях менисковой линзы, главного зеркала, зеркала Манжена и второй линзы соответственно.

После определения углов α_2 и α_8 вычисляются значения радиусов кривизны линзовых компонентов [5]:

$$r_{1} = \frac{n_{2} - 1}{n_{2}\alpha_{2}}; \quad r_{2} = \frac{1 - n_{2}}{\alpha_{3} - n_{2}\alpha_{2}}; \quad r_{7} = \frac{h_{V}(n_{8} - 1)}{n_{8}\alpha_{8} - \alpha_{7}}; \quad r_{8} = \frac{h_{V}(1 - n_{8})}{1 - n_{8}\alpha_{8}}$$

Завершается расчет исходного варианта определением значения третьей суммы Зейделя по следующей формуле:

$$S_{\text{III}} = H_{\text{I}}^{2} \left(P_{1} + P_{2} \right) + \frac{H_{\text{III}}^{2} \left(P_{4} + P_{5} + P_{6} \right)}{\eta} + \frac{H_{\text{V}}^{2} \left(P_{7} + P_{8} \right)}{h_{\text{V}}} + 2H_{1} \left(W_{1} + W_{2} \right) + \frac{2H_{\text{III}} \left(W_{4} + W_{5} + W_{6} \right)}{\eta} + \frac{2H_{\text{V}} \left(W_{7} + W_{8} \right)}{h_{\text{V}}} + \Phi_{\text{I}} - \frac{\alpha_{4} + \Phi_{\text{I}}}{h_{\text{II}}} + \frac{\alpha_{4} + \alpha_{7}}{\eta} + \frac{1 - \alpha_{7}}{h_{\text{V}}}.$$

Таким образом, предлагаемая методика позволяет получить вариант объектива, состоящий из тонких компонентов, с заданными величинами фокусного расстояния, коэффициента экранирования и выноса изображения за вершину главного зеркала, а также с требуемыми значениями сумм Зейделя $S_{\rm I}$, $S_{\rm IV}$, $S_{\rm I xp}$. Введение конечных толщин линз в исходный вариант объектива приводит к уменьшению заднего фокусного расстояния и заднего фокального отрезка. Поэтому при расчете исходного варианта объектива с тонкими линзами необходимо задавать значения этих характеристик больше номинальных значений. Значения сумм Зейделя $S_{\rm I}$, $S_{\rm I}$, и $S_{\rm Ixp}$ после ввода конечных значений толщин линз наоборот увеличиваются, что также необходимо учитывать, вводя соответствующие поправки к требуемым значениям сумм Зейделя.

Завершающим этапом предлагаемой методики расчета объектива является оптимизация исходного варианта с помощью одной из программ автоматизированного расчета оптических систем.

В качестве примера рассмотрим синтез длиннофокусного зеркально-линзового объектива с фокусным расстоянием 2 000 мм, относительным отверстием 1:12,5 и угловым полем $2\omega = 1,23^{\circ}$. В качестве материала линз выбрано наиболее распространенное и дешевое стекло марки К8 ($n_D = 1,5163$ и v = 32,417). Объектив предназначен для работы в видимой области спектра $\lambda_h...\lambda_C = 0,40466...0,65627$ мкм (основная длина волны $\lambda_D = 0,58929$ мкм). Зададим следующие значения исходных данных: f' = 2 150 мм; c = 70 мм; $\eta = 0,315$; $d_{\rm I} = -d_{\rm II} = d_{\rm III} = 530$ мм; $S_{\rm I} = -4,4$; $S_{\rm II} = -1,23$; $S_{\rm IV} = 0$; $S_{\rm Ixp} = 0,002363$.

Из двух корней квадратного уравнения (1), равных соответственно 3,7858435 и –0,0974024, выбираем второе значение, которое и будет определять оптическую силу первой менисковой линзы $\Phi_{\rm I}$. Оптические силы остальных компонентов объектива, радиусы кривизны главного зеркала и зеркала Манжена будут соответственно равны: $\Phi_{\rm II} = 2,903854$; $\Phi_{\rm III} = 0,128686$; $\Phi_{\rm IV} = -5,750773$; $r_3 = -1480,79$ мм, $r_4 = r_6 = -688,081$ мм; $r_5 = -747,726$ мм.

Углы первого вспомогательного луча внутри линз объектива, полученные при решении системы уравнений (2), имеют следующие значения: $\alpha_2 = -2,13387$ и $\alpha_8 = 1,1$. Радиусы кривизны тонких линз компенсатора получились равными: $r_1 = -343,07$ мм, $r_2 = -353,72$ мм, $r_7 = 69,21$ мм, $r_6 = 54,11$ мм. Таким образом, конструктивные параметры исходного варианта тонкого объектива полностью определены.

На следующем этапе расчета вводятся конечные толщины линз, исходя из технологических требований, а получение желаемого значения фокусного расстояния обеспечивается корректировкой воздушных промежутков.

Оптимизация рассматриваемого варианта объектива, выполненная с помощью программы «ОПАЛ», дала следующие значения конструктивных параметров:

$$r_1 = -255,57$$
 MM; $r_2 = -265,3$ MM; $r_3 = -1427,38$ MM; $r_4 = -753,41$ MM;
 $r_5 = -677,12$ MM; $r_6 = -753,41$ MM; $r_7 = 42,77$ MM; $r_8 = 36,83$ MM;

Оптимизированный объектив имеет аберрационный кружок для осевой точки изображения диаметром 0,0157 мм, а пятно рассеяния для края поля ($\omega = 36'50''$) составляет 0,0196 мм в меридиональном сечении и 0,0139 мм в сагиттальном сечении. Для максимальной длины волны диаметр дифракционного кружка Эри в данной оптической системе составляет 20 мкм. Рассчитанный объектив фокусирует в кружок такого диаметра 71 % энергии осевого пучка, на зоне поля ($\omega = 26'02''$) доля собранной энергии уменьшается до 70,65 %, а на краю поля ее значение составляет 70,72 %. В таблице приведены значения функции передачи модуляции полученной оптической системы с учетом дифракции. Контраст по уровню 0,3 наблюдается для осевой точки изображения на частоте 75 мм⁻¹, а по всему полю такой же контраст соответствует частоте 72 мм⁻¹. Все это говорит о высоком качестве изображения объектива и эффективности применения предлагаемой методики.

Пространственная частота v, мм ⁻¹	Точка на оси	Край поля (<i>ω</i> = 36′50″)	
		меридиональное	сагиттальное сече-
	$(\omega = 0)$	сечение	ние
10	0,86	0,85	0,86
20	0,72	0,71	0,72
30	0,58	0,57	0,58
40	0,46	0,45	0,46
50	0,39	0,38	0,39
60	0,34	0,34	0,34
70	0,31	0,31	0,31

Значения функции передачи модуляции рассчитанного объектива

СПИСОК ЛИТЕРАТУРЫ

- 1. Бодров С.В. Методика расчета длиннофокусного зеркально-линзового фотографического объектива // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2010. № 4. С. 18—26.
- 2. Бодров С.В., Богачев Ю.В. Светосильные зеркально-линзовые объективы с двухлинзовым компенсатором // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2000. № 3. С. 63—69.
- 3. Бодров С.В., Богачев Ю.В. Методика расчета светосильного зеркально-линзового объектива со сферическими поверхностями // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2001. № 4. С. 76—83.
- Бодров С.В., Богачев Ю.В. Расчет зеркально-линзовых объективов: Методические указания для курсового и дипломного проектирования. М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. 35 с.
- 5. Заказнов Н.П., Кирюшин С.И., Кузичев В.И. Теория оптических систем. М.: Машиностроение, 1992. 448 с.

Статья поступила в редакцию 16.10.2012