Н.И. Бондаренко, Ю.И. Терентьев

К ВОПРОСУ ОБ ОПРЕДЕЛЕНИИ ДАВЛЕНИЯ В ТРУБОПРОВОДЕ ПРИ ЕГО ЗАКРЫТИИ

Рассмотрено неустановившееся движение идеальной сжимаемой жидкости в однородной упругой прямой трубе, вызванное срабатыванием отсечного устройства. Результаты расчетов давления перед отсечным устройством для различных случаев прямого и непрямого гидроударов представлены в виде двух обобщенных графических зависимостей.

E-mail: yury_terentev@mail.ru

Ключевые слова: трубопровод, расход жидкости, разностная схема, давление, фаза гидравлического удара.

В процессе эксплуатации жидкостных ракет их расходные магистрали подвергаются различным наземным и полетным режимам нагружения [1]. В некоторых из них велика вероятность возникновения гидравлического удара, например, в случае аварийного выключения двигателей при стендовых испытаниях или на пусковой установке.

При проведении прочностного расчета трубопроводов и их опор необходимо знать распределение давления по длине трубопровода, в том числе и при гидравлическом ударе. Этому вопросу посвящено много работ, например [2—10, 12]. Однако интересным является инженерный метод определения характеристик переходных процессов в трубопроводах с помощью которого можно оперативно и с заданной точностью их прогнозировать.

В настоящей работе предложен подход, основанный на численном решении уравнений движения и неразрывности идеальной сжимаемой жидкости в полностью заполненной однониточной трубе, который дает возможность определить изменение параметров потока во времени при быстром перекрытии трубопровода, а в частном случае получить обобщенные зависимости давления перед клапаном, перекрывающим проходное сечение трубы, от времени.

Уравнения движения и неразрывности потока для рассматриваемого случая имеют вид [5, 8]

$$\rho \frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = 0,$$

$$\frac{\partial p}{\partial t} + \rho a^2 \frac{\partial v}{\partial x} = 0,$$
(1)

69

где v, p — скорость и давление возмущенного потока в сечении x в момент времени t, отсчитываемые от своих начальных значений v_0 и

 p_0 , которые были в момент времени перед началом закрытия клапана; ρ — плотность жидкости в невозмущенном потоке; a — эффективная скорость звука в потоке с учетом упругости стенок трубы, определяемая для цилиндрической трубы, $a = c\sqrt{E\delta/(E\delta + \varepsilon D)}$ (c — скорость звука в бесконечном объеме жидкости; D и δ — диаметр и толщина стенки трубы; E и ε — модули упругости материала стенки и жидкости).

В уравнении движения не учитывается гидравлическое сопротивление трения трубы, поскольку расходные магистрали жидкостных ракет, как правило, имеют значительную длину и большой диаметр. В таких магистралях скорость потока небольшая и гидравлическое сопротивление незначительно [5]. Это позволяет сравнить результаты, получаемые по предлагаемой методике, с данными, получаемыми по формулам Жуковского и Мишо [4, 7] для прямого и непрямого гидроударов соответственно.

Обозначив площадь проходного сечения F, массовый расход $G = \rho v F$ и вводя переменные

$$\varphi = \frac{G}{F} + \frac{p}{a}, \quad \psi = \frac{G}{F} - \frac{p}{a},$$

систему уравнений (1) представим в виде

70

$$\frac{\partial \varphi}{\partial t} + a \frac{\partial \varphi}{\partial x} = 0,$$

$$\frac{\partial \psi}{\partial t} - a \frac{\partial \psi}{\partial x} = 0.$$
(2)

Построим разностный аналог уравнений (2). Для этого используем разностную схему, в соответствии с которой однородную трубу длиной l разобъем вдоль своей продольной оси x на N элементов одинаковой длины h = l / N. Время t также разобъем на слои, отстоящие один от другого на шаг τ . Обозначим через k номер слоя по времени t, через n — номер сечения по оси x.

Неизвестные функции φ и ψ на *k*-м временном слое в сечении *n* обозначим φ_n^k , ψ_n^k . Частные производные запишем следующим образом:

$$\left(\frac{\partial\varphi}{\partial t}\right)_{n}^{k} = \frac{\varphi_{n}^{k+1} - \varphi_{n}^{k}}{\tau}, \quad \left(\frac{\partial\varphi}{\partial x}\right)_{n}^{k} = \frac{\varphi_{n}^{k} - \varphi_{n-1}^{k}}{h},$$
$$\left(\frac{\partial\psi}{\partial t}\right)_{n}^{k} = \frac{\psi_{n}^{k+1} - \psi_{n}^{k}}{\tau}, \quad \left(\frac{\partial\psi}{\partial x}\right)_{n}^{k} = \frac{\psi_{n+1}^{k} - \psi_{n}^{k}}{h}.$$

Тогда система уравнений (2) принимает вид

$$\varphi_n^{k+1} = (1-s)\varphi_n^k + s\varphi_{n-1}^k \,, \tag{3}$$

$$\psi_n^{k+1} = (1-s)\psi_n^k + s\psi_{n+1}^k \,, \tag{4}$$

где $s = a\tau / h$ — критерий Куранта [12].

Формулы (3) и (4) позволяют определить функции φ и ψ на очередном временном (k+1)-слое через их известные значения на предыдущем временном слое. Выражение (3) справедливо для сечений $n = \overline{2, N+1}$, а выражение (4) — для $n = \overline{1, N}$.

Возвращаясь к переменным v, p, из уравнений (3) и (4) находим зависимости, связывающие давление и скорость на границах (n = 1 и n = N + 1) трубы:

$$a\rho v_1^{k+1} - p_1^{k+1} = (1-s)(a\rho v_1^k - p_1^k) + s(a\rho v_2^k - p_2^k),$$
(5)

$$a\rho v_{N+1}^{k+1} - p_{N+1}^{k+1} = (1-s)(a\rho v_{N+1}^k + p_{N+1}^k) + s(a\rho v_N^k + p_N^k),$$
(6)

а также в ее промежуточных ($n = \overline{2, N}$) сечениях:

$$p_n^{k+1} = p_n^k(1-s) + \frac{s}{2} \Big[a\rho(v_{n-1}^k - v_{n+1}^k) + p_{n-1}^k + p_{n+1}^k \Big], \tag{7}$$

$$v_n^{k+1} = v_n^k (1-s) + \frac{s}{2} \left[v_{n-1}^k + v_{n+1}^k + \frac{1}{a\rho} (p_{n-1}^k - p_{n+1}^k) \right].$$
(8)

Решение разностных уравнений (3) и (4) будет устойчивым и приближающимся к решению системы (2) при условии, что критерий Куранта $s \le 1$ [11].

Применим рассмотренную разностную схему решения к случаю нестационарного течения жидкости в трубе, которая на входе (n = 1) подсоединена к емкости (трубопровод акустически открыт — давление $p_1 = 0$), а на выходе у нее (n = N + 1) находится клапан, перекрывающий проходное сечение трубы таким образом, что расход уменьшается от первоначального значения G_0 до нуля в соответствии с известным линейным законом. Тогда из выражений (5) и (6) для крайних сечений трубы

$$G_1^{k+1} = (1-s)G_1^k + s\left(G_2^k - \frac{F}{a}p_2^k\right),$$
$$p_{N+1}^{k+1} = (1-s)\left(\frac{a}{F}G_{N+1}^k + p_{N+1}^k\right) + s\left(\frac{a}{F}G_N^k + p_N^k\right) - \frac{a}{F}G_{N+1}^{k+1},$$

а из уравнений (7) и (8) для внутренних сечений ($n = \overline{2, N}$)

$$p_n^{k+1} = (1-s)p_n^k + \frac{s}{2} \left[\frac{a}{F} (G_{n-1}^k - G_{n+1}^k) + p_{n-1}^k + p_{n+1}^k \right],$$
$$G_n^{k+1} = (1-s)G_n^k + \frac{s}{2} \left[\frac{F}{a} (p_{n-1}^k - p_{n+1}^k) + G_{n-1}^k + G_{n+1}^k \right].$$

Для акустически открытой трубы фаза гидравлического удара $\beta = 2l/a$ [10], а период колебаний потока по низшему тону $T = 4l/a = 2\beta$ [5]. Если время $t_{\rm n}$ перекрытия выходного сечения трубы $t_{\rm n} \leq \beta$, максимальное давление гидроудара в этом сечении определяется формулой Жуковского [4, 7]:

$$p_{\rm ry} = \rho v_0 a = \frac{G_0 a}{F}.$$
(9)

Если $t_{\rm m} > \beta$ и торможение жидкости происходит в соответствии с линейным законом, максимальное давление определяется формулой Мишо [2, 7]:

$$p = \rho v_0 a \beta / t_{\pi} = p_{\rm ry} \beta / t_{\pi}. \tag{10}$$

Для проверки предлагаемой модели выполнены расчеты давления в выходном сечении трубопровода при различных значениях t_{Π} и s = 1. Если $0 < t_{\Pi} < \beta$, давление гидроудара изменяется следующим образом (рис. 1). За время t_{Π} оно повышается, согласно линейному закону, от нуля до максимального значения $p_{\Gamma y}$, определяемого формулой (9), и остается неизменным до момента времени $t = \beta$ — фазы гидравлического удара. Затем за время $\Delta t = t_{\Pi}$ оно снижается, согласно линейному закону, до величины $-p_{\Gamma y}$ и остается постоянным до момента времени $t = 2\beta$. Далее за время Δt давление повышается в соответствии с линейным законом до значения $p_{\Gamma y}$. После того процесс, реализуемый на временном отрезке $t_{\Pi} \le t \le (t_{\Pi} + 2\beta)$, повторяется с периодом $T = 2\beta$, равным периоду колебаний потока в акустически открытой трубе.

Очевидно, что при $t_{\rm n} = 0$ (мгновенное перекрытие) график изменения давления соответствует представленному на рис. 2 (кривая *l*). Этот график обычно и приводят в учебной литературе по гидромеханике [10]. Для времени перекрытия $t_{\rm n} = \beta$ график изменения давления от времени показан на рис. 2 (кривая *2*).

Рис. 1. Зависимость давления в конце трубы от времени при $t_n = \beta / 4(1)$ и $\beta / 2$ (2)

Рис. 2. Зависимость давления в конце трубы от времени при $t_{\rm fl} = 0$ (1) и $t_{\rm fl} = \beta$ (2)

Теперь рассмотрим случаи, когда $\beta < t_{\Pi} < 2\beta$. Как следует из рис. 3, давление достигает максимума в момент времени $t = \beta$, причем его значение точно совпадает с вычисленным по формуле (10). Так, при $t_{\Pi} = 1,25\beta$ давление $p = 0,8p_{\Gamma y}$, а при $t_{\Pi} = 1,5\beta$ $p = 0,(6)p_{\Gamma y}$.

После достижения максимального значения и до момента времени $t_{\rm fr}$ давление снижается в соответствии с линейным законом, график изменения которого симметричен относительно вертикали при $t = \beta$ соответствующему графику изменения давления на участке $0 \le t \le \beta$. При $t = t_{\rm fr}$ давление $p = p_{\rm fr} = (2\beta/t_{\rm fr} - 1) p_{\rm fry}$. При $t > t_{\rm fr}$ давление изменяет-

73

ся следующим образом: на временном отрезке $t_{\Pi} \le t \le 2\beta$ оно снижается, согласно линейному закону, до значения $-p_{\Pi}$ и остается постоянным в течение времени $\Delta t = t_{\Pi} - \beta$. Далее оно повышается, согласно линейному закону, достигая при $t = 3\beta$ значения p_{Π} , которое сохраняется в течение времени Δt . Затем процесс, реализуемый на временном отрезке $t_{\Pi} \le t \le (t_3 + 2\beta)$, повторяется с периодом *T*. Следует отметить, что при $t_{\Pi} \rightarrow 2\beta$ давление $p_{\Pi} \rightarrow 0$, а $\Delta t \rightarrow \beta$. В предельном случае $(t_{\Pi} = 2\beta)$ график изменения давления показан на рис. 4.

Рис. 3. Зависимость давления в конце трубы от времени при $t_{\rm n} = 125\beta(I)$ и $1,5\beta(2)$

Рис. 4. Зависимость давления в конце трубы от времени при $t_{\rm m} = 2\beta$

На рис. 5 представлены графики изменения давления для случаев $2\beta < t_{\rm n} < 3\beta$. Ясно, что здесь давление достигает максимального значения при $t = \beta$. Его значение точно соответствует значению, вычисленному по формуле (10). В момент полного перекрытия трубы давление

 $p = p_{\Pi} = (1 - 2\beta/t_{\Pi}) p_{\Gamma y}$. Для времени перекрытия трубы $t_{\Pi} = 3\beta$ график изменения давления показан на рис. 6. В этом случае максимальное значение давления, определяемое по формуле (10) и реализуемое первый раз в момент времени $t = \beta$, с течением времени при $t \ge 3\beta$ многократно повторяется, принимая при $t = i\beta$ положительные (i = 3, 5, 7, ...) и отрицательные (i = 4, 6, 8, ...) значения.

Рис. 5. Зависимость давления в конце трубы от времени при $t_{\rm n} = 225\beta(1)$ и 2,75 $\beta(2)$

Рис. 6. Зависимость давления в конце трубы от времени при $t_n = 3\beta$

На рис. 7 представлены графики изменения давления для случаев $3\beta < t_{\pi} < 4\beta$, а на рис. 8 — в предельном случае $t_{\pi} = 4\beta$.

Рис. 7. Зависимость давления в конце трубы от времени при $t_{\rm II} = 3,25\beta$ (1) и 3,75 β (2)

Рис. 8. Зависимость давления в конце трубы от времени при $t_{\rm m} = 4\beta$

Анализ этих и других результатов расчетов свидетельствует, что если расход жидкости на выходе трубы уменьшается до нуля, согласно линейному закону, и время полного перекрытия трубы $t_{\Pi} = i\beta + \Delta t$, где $0 \le \Delta t \le \beta$, i = 0, 1, 2, 3, ..., то для определения от-клонения давления от стационарного значения в этом сечении в любой момент времени достаточно воспользоваться одним из двух графиков, показанных на рис. 9, 10.

1. При i = 0, 2, 4, 6, ... график изменения давления от времени имеет вид, как на рис. 9. В зависимости от значений $i, \Delta t$ указанный график соответствует графикам на следующих рисунках: i = 0, $t_{\Pi} = \Delta t < \beta$ — рис. 1; $i = 0, \Delta t = 0$, при этом величину $i\beta/t_{\Pi}$ следует считать равной нулю, — рис. 2, кривая *l*; $\Delta t = 0$, время t_{Π} равно четному числу фаз гидравлического удара — рис. 4, 8; $i = 2, 0 < \Delta t < \beta$ — рис. 5; $i = 0, \Delta t = \beta$ — рис. 2, кривая *2*; $i = 2, \Delta t = \beta$ — рис. 6.

Рис. 9. Зависимость давления в конце трубы от времени при $t_{\rm fl} = i\beta + \Delta t$, $i = 0, 2, 4, 6, ..., A = 1 - i\beta / t_{\rm fl}$

Рис. 10. Зависимость давления в конце трубы от времени при $t_{\rm m} = i\beta + \Delta t$, $i = 1, 3, 5, ..., A = (1 + i)\beta / t_{\rm m} - 1$

2. При i = 1, 3, 5, ... обобщенный график изменения давления имеет вид, как на рис. 10. В зависимости от значений $i, \Delta t$ он соответствует графикам на следующих рисунках: $i = 0, 0 < \Delta t < \beta$ — рис. 3, 7; $\Delta t = 0$ — рис. 2, кривая 2; $i = 1, \Delta t = \beta$ — рис. 4; $i = 3, \Delta t = \beta$ — рис. 8.

Таким образом, представлена методика определения параметров потока сжимаемой жидкости при отсутствии гидравлического сопротивления в однородном прямом трубопроводе с известным законом изменения расхода в его выходном сечении. Для случая уменьшения расхода в соответствии с линейным законом до нуля предложен способ оперативного получения графика зависимости давления на выходе трубы от времени, который можно использовать для расчетов динамических нагрузок на опоры и другие элементы конструкции трубопровода.

СПИСОК ЛИТЕРАТУРЫ

78

- 1. Гладкий В.Ф. Динамика конструкции летательного аппарата. М.: Наука, 1969.
- 2. Бержерон Л. От гидравлического удара в трубах до разряда в электрической сети. М.: Машгиз, 1962.
- 3. Жмудь А.Е. Гидравлический удар в гидротурбинных установках. Элементы теории и расчет. М.: Госэнергоиздат, 1953.
- 4. Жуковский Н.Е. О гидравлическом ударе в трубах: полн. собр. соч. Т. VII. М.: ОНТИ, 1937.
- 5. Колесников К.С. Продольные колебания ракет с жидкостным ракетным двигателем. М.: Машиностроение, 1971.
- 6. Колесников К.С., Джикаев Б.Л. Нестационарные процессы в простом трубопроводе при быстром срабатывании отсечных устройств // Изв. АН СССР. Энергетика и транспорт. 1975. № 1. С.174—176.
- 7. Колесников К.С., Рыбак С.А., Самойлов Е.А. Динамика топливных систем ЖРД. М.: Машиностроение, 1975.
- 8. Натанзон М.С. Продольные автоколебания жидкостной ракеты. М.: Машиностроение, 1977.
- 9. Попов Д.Н., Орлов А.Е. Математическая модель неустановившегося движения реальной жидкости в цилиндрической трубе с круглым сечением и упругими стенками // Изв. вузов. Машиностроение. 1988. № 4. С. 60—63.
- 10. Попов Д.Н., Панаиотти С.С., Рябинкин М.В. Гидромеханика. М.: Изд-во МГТУ им Н.Э.Баумана, 2002.
- 11. Чарный И.А. Неустановившееся движение реальной жидкости в трубах. М.: Недра, 1975.
- 12. Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Едиториал УРСС, 2004.

Статья поступила в редакцию 14.09.2012