УДК 621.574:536.75

В.В.Шишов

ЭНТРОПИЙНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ ХОЛОДИЛЬНЫХ ЦИКЛОВ ДЛЯ СИСТЕМ КОНДИЦИОНИРОВАНИЯ*

Методом энтропийно-статистического анализа исследованы простой, с промежуточным хладагентом и регенеративный циклы одноступенчатой парокомпрессионной холодильной машины, работающей в режиме кондиционирования воздуха на разных хладагентах. Расхождение полученных в результате анализа расчетных значений адиабатной работы сжатия со значениями, определенными по диаграммам T-s ($\lg p - h$), для циклов на хладоне R22 не превышает 1%. Проведенный в рамках энтропийно-статистического анализа расчет распределения потерь работы в холодильной машине дает возможность выделить определенные элементы (узлы), которые требуют особого внимания. Выявлено также влияние вида хладагента на распределение потерь работы сжатия в холодильной машине.

E-mail: vv@shishov.net

Ключевые слова: энтропийно-статистический метод анализа, холодильные циклы, хладагенты.

Энтропийно-статистический метод позволяет определить необходимые затраты энергии на компенсацию производства энтропии вследствие необратимости рабочих процессов в различных элементах (узлах) низкотемпературных установок и указывает на пути их совершенствования [1, 2].

В статье продолжено исследование энтропийно-статистическим методом рефрижераторных фреоновых циклов (простого одноступенчатого, с промежуточным хладоносителем и цикла с рекуператором) парокомпрессионной холодильной машины с различными хладагентами (R22, R134a и R410A) [3].

Исходные данные для расчета и анализа холодильных циклов для режима кондиционирования (рис. 1) с разными хладагентами выбраны общими за исключением средней температуры кипения хладагента:

• температура в помещении (температура холодного источника теплоты) $t_{\rm m} = +20$ °C ($T_{\rm m} = 293$ K);

• температура окружающей среды (средняя) $t_{o.c} = 27 \,^{\circ}\text{C} (T_{o.c} = 300 \,\text{K});$

• средняя температура конденсации хладагента $t_{\kappa} = 42 \,^{\circ}\text{C} \ (T_{\kappa} = 315 \,\text{K});$

*Работы по энтропийно-статистическому анализу холодильных циклов проводятся в МГТУ им. Н.Э. Баумана на кафедре "Холодильная и криогенная техники, кондиционирование и системы жизнеобеспечения" под руководством д-ра техн. наук, профессора А.М. Архарова.

Рис. 1. Действительные холодильные циклы: простой с непосредственным охлаждением (1–2–3–4–5–6–1), с промежуточным хладоносителем (1*–2*–3–4–5*–6*–1*) и с рекуператором (1**–2**–3–4–4**–5**–6–1**) парокомпрессионной холодильной машины (хладоноситель R22) в координатах Ts (*a*) и $h \lg p$ (δ)

 адиабатный КПД компрессора, выражающий степень термодинамического совершенства процесса сжатия в адиабатных условиях — *η*_{ад} = 0,8;

• холодопроизводительность $Q_0 = 1 \, \text{кBT}$;

• перегрев в испарителе, переохлаждение в конденсаторе, перегрев и охлаждение в трубопроводах, потери давления в теплообменниках и трубопроводах не учтены.

Средняя температура кипения хладагента:

• в испарителе — воздухоохладителе (теплообменнике нагрузки) для простого цикла с непосредственным охлаждением и цикла с рекуператором $t_0 = +5$ °C ($T_0 = 278$ K);

• в испарителе для цикла с хладоносителем $t_0 = 0$ °С ($T_0 = 273$ K) (температура кипения ниже на 5 K средней температуры хладоносителя в испарителе $t_{xH} = +5$ °С ($T_{xH} = 278$ K)).

Параметры рабочих тел в узловых точках циклов, определенные по программе Solkane 7.0, приведены в табл. 1 и 2, показатели производительности циклов — в табл. 3, удельные показатели циклов — в табл. 4, удельные значения минимально необходимой работы для компенсации производства энтропии — в табл. 5, распределение потерь по узлам холодильной установки — в табл. 6 (значения в квадратных скобках в табл. 1 и 2 относятся к хладагентам R134a и R410A; значения в круглых скобках во всех таблицах относятся к простому циклу).

Примеры расчетов приведены для хладагента R22.

Расчет простого цикла. Удельная холодопроизводительность простого цикла в режиме криостатирования при температуре $T_{\rm n}$ равной +20 °C,

$$q_0 = h_1 - h_4 = h_1 - h_5 = 406,71 - 252,26 = 154,45 \frac{\kappa Дж}{\kappa \Gamma}$$

Минимально необходимая удельная работа (электроэнергия) для генерации холода q_0

$$l_{\min} = q_0 \frac{T_{\text{o.c}} - T_{\text{m}}}{T_{\text{m}}} = 154,45 \frac{300 - 293}{293} = 154,45 \cdot 0,0233 = 3,7 \frac{\text{KJ}\text{K}}{\text{K}^{-1}}.$$

Адиабатная работа сжатия

$$l_{aa} = h_{2aa} - h_1 = 431, 8 - 406, 71 = 25,09 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

Действительная затрачиваемая удельная работа сжатия с учетом $\eta_{\rm ag}=0.8$

$$l_{\rm cx} = q_{\rm kg} - q_0 = h_2 - h_4 - (h_1 - h_4) = 438,07 - 252,26 - 154,45 = 31,36 \frac{{
m K}{
m A}{
m x}}{{
m K}{
m F}}$$
или

 $l_{
m cm}=rac{l_{
m ag}}{}$

$$u_{\rm cm} = rac{l_{
m ad}}{\eta_{
m ad}} = rac{25,09}{0,8} = 31,36 \; rac{
m K \mu m}{
m K \Gamma}$$

Степень термодинамического совершенства цикла

$$\eta_{\text{терм}} = \frac{l_{\min}}{l_{\text{сж}}} = \frac{3.7}{31,36} = 0.118.$$

~
Ĥ
È
5
ğ
-00
Г

араметры рабочих тел (R22) в узловых точках цикла с промежуточным хладоносителем (1*-2*-3-4-5*-6*-1*) и простого цикла (1-2-3-4-5-6-1)
33

	x											0.255 (0.231)	[0.299 (0.270),	0.316 (0.290)]			
	<i>s</i> , кДж/(кг·К)	1,7504 (1,7433)	[172.67 (1.7241),	1.81 (1.8001)]	1.772 (1.762)	[1.7476 (1.742),	1.8335 (1.8004)]	1.6962	[1.71, 1.7219]	1.1748	[1.1991, 1.2323]	1.91 (1.1880)	[1.2175 (1.2135),	1.2555 (1.2506)]	1.7504 (1.7433)	[1.7267 (1.7241),	1.81 (1.8001)]
заметры	h, қДж/кг	434,15 (431,80)	[425.49 (424.64),	452.91 (449.61)]	441.46 (438.07)	[432,24 (430.46),	460.83 (456.37)]	416.58	[420.19, 424.37]	252.26	[259.40, 269.84]				404.91 (406.71)	[398.49 (401.37),	421.23 (422.58)]
Пај	$v, \mathrm{дm}^3/\mathrm{kr}$	16,28 (16,03)	[19.52 (19.42),	11.17 (10.94)]	17.4 (16.69)	[20.31 (20.10),	11.70 (11.40)]	14.34	[18.88, 9.12]	0.89	[0.88, 1.04]	12.58 (9.90)	[21.27 (16.35),	10.93 (8.70)]	47.04 (40.29)	[69.28 (58.35),	32.73 (27.90)]
	$t, ^{\circ}\mathrm{C}$	60,54 (57,96)	[46.71 (45.95),	60.53 (58.14)]	68.7 (64.90)	[52.83 (51.21),	66.51 (63.11)]	42.0	[42.0, 42.0]			0.0 (5.0)	[0.0 (5.0),	0.0 (5.0)]			
	p, 6ap	16,10		[10.72, 25.38]								4.98(5.84)	[2.93 (3.50),	7.98 (9.33)]			
Torrito L	илгот	$2^*_{ m a_{II}}\left(2_{ m a_{II}} ight)$			$2^{*}(2)$			б		4		$5^{*}(5)$			$6^{*}(6)$	$1^{*}(1)$	

Таблица 2

÷
÷
÷
*
Ŷ
7
Ĵ
Å
*
÷
7
Do
TO
pa
пе
Кy
pe
J
Ла
ИК
Ħ
cax
Ē
J
ΧI
BE
Ĩ
Ň
B
re
X
<u>10</u>
)a(
ļ
bP
tet
aN
lap
Ξ

			Πat	Jamerphi		
Точки	p, бар	$t, ^{\circ}C$	<i>v</i> , дм ³ /кг	ћ, қДж/кг	<i>s</i> , қДж/(кг·К)	x
*	5.84	37.00	47.06	430.67	1.8249	
	[3.5, 9.33]	[37.0, 36.88]	[67.66, 33.76]	[430.4, 455.65]	[1.8229, 1.9128]	
$2^{**}_{ m a \mu}$	16.10	90.25	18.91	460.09		
	[10.72, 25.38]	[76.58, 89.30]	[23.06, 13.48]	[457.65, 488.62]		
2*		98.92	19.61	467.45	1.8448	
		[83.03, 96.44]	[23.76, 13.99]	[464.46, 496.86]	[1.8422, 1.9353]	
e		42.0	14.34	416.58	1.6962	
		[42.0, 42.0]	[18.88, 9.12]	[420.19, 424.37]	[1.710, 1.7219]	
4		42.0	0.89	252.26	1.1748	
		[42.0, 41.88]	[0.88, 1.04]	[259.4, 269.84]	[1.199, 1.22323]	
4^{**}		23.27	0.84	228.30	1.0981	
		[21.96, 23.20]	[0.82, 1.04]	[230.36, 236.78]	[1.1052, 1.1263]	
°5* **	5.84	5.0 [5.0, 4.91]	5.19 [7.76,		1.1019 [1.1091,	0.111
	[3.5, 9.33]		4.54]		1.1317]	[0.121, 0.136]
9		5.0 [5.0, 5.0]	40.29	406.71	1.7433	
			[58.35, 27.9]	[401.37, 422.58]	[1.7241, 1.8001]	

Таблица 3

Хладагент	$Q_{\rm kg}$, кВт	<i>N</i> , кВт	<i>g</i> , г/с	$V, {\rm M}^{3/{ m 4}}$	q_v , кДж/м ³	Δp , бар	π	$Q_{\rm peк},\kappa { m Bt}$
		Циклы	с проме	жуточны	м хладоносі	ителем и	простой	Í
R410A	1,26	0,26	6,606	0,78	4625	17,4	3,18	-
	(1,22)	(0,22)	(6,547)	(0,66)	(5474)	(16,05)	(2,72)	
R22	1,24	0,24	6,551	1,11	3245	11,12	3,23	_
	(1,20)	(0,21)	(6,474)	(0,94)	(3834)	(10,26)	(2,757)	
R134a	1,24	0,24	7,19	1,79	2008	7,79	3,66	_
	(1,20)	(0,20)	(7,044)	(1,48)	(2433)	(7,23)	(3,07)	
			-	Цикл с ј	рекуперацие	й		
R410A	1,22	0,22	5,382	0,65	5503	16,05	2,72	0,18
R22	1,21	0,21	5,605	0,95	3791	10,26	2,757	0,13
R134a	1,20	0,20	5,848	1,42	2527	7,23	3,07	0,17

Показатели производительности циклов

П р и м е ч а н и е. $Q_{\rm kg}$ — производительность конденсатора; N — мощность компрессора; g — массовый расход хладагента; V — объемная подача хладагента; q_v — удельная объемная холодопроизводительность; Δp — разность давлений в конденсаторе и испарителе; $\pi = \frac{P_{\rm cx}}{P_{\rm вc}}$ — степень повышения давления при сжатии; $Q_{\rm pek}$ — тепловая нагрузка рекуператора при минимальной разности температур 5 К.

Холодильный коэффициент при адиабатном процессе сжатия

$$arepsilon_{
m ad} = rac{q_0}{l_{
m ad}} = rac{154,45}{25,09} = 6,16rac{\kappa \mbox{Дж(холода)}}{\kappa \mbox{Дж(работы)}}$$

Действительное значение холодильного коэффициента

$$\varepsilon_{\rm g} = \frac{q_0}{l_{\rm cm}} = \frac{154,45}{31,36} = 4,925 \frac{\text{кДж(холода)}}{\text{кДж(работы)}}$$

Действительное значение коэффициента удельных затрат мощности

$$arphi = rac{1}{arepsilon_{ extsf{\pi}}} = rac{1}{4,925} = 0,2rac{ extsf{\kappa} extsf{(работы)}}{ extsf{\kappa} extsf{(холода)}}.$$

Определение удельной минимально необходимой работы (изотермической работы сжатия) для компенсации производства энтропии в основных рабочих процессах холодильной установки.

Максимальная работа, которая могла бы быть возвращена при охлаждении R22 от температуры $t_{2ad} = 57,96 \,^{\circ}\text{C} (330,96 \,\text{K})$ до $t_3 = 42 \,^{\circ}\text{C} (315 \,\text{K})$ и передаче этой теплоты $(h_{2ad} - h_3)$ в окружающую среду обратимым путем: $l_{\text{max}} = (h_{2ad} - h_3) - T_{\text{o.c}}(s_{2ad} - s_3) = (431,8 - 416,58) - -300(1,7433 - 1,6962) = 1,09 \frac{\text{кДж}}{\text{кг}}.$

∇
đ
Ē
2
E
vÖ
°,
H

		Уде.	льные показа	тели циклов				
Хпапарент	q₀, кДж/кг	l_{\min} , қДж/кг	l _{ад} , кДж/кг	l _{сж} , кДж∕кг	$\eta_{ ext{repm}}$	$\varepsilon_{\mathrm{a}_{\mathrm{II}}}$	$\varepsilon_{_{\rm II}}$	θ
		Циклы с	с промежуточн	ным хладонос	ителем и г	іростой		
R410A	151,39	3,618	31,68	39,6	0,0914	4,779	3,82	0,262
	(152,74)	(3,56)	(27,03)	(33, 79)	(0,105)	(5,65)	(4,51)	(0, 22)
R22	152,65	3,648	29,42	36,55	0,0998	5,21	4,168	0,24
	(154,45)	(3,69)	(25,09)	(31, 36)	(0,1177)	(6, 16)	(4,925)	(0,2)
R134a	141,97	3,324	27,0	33,75	0,0985	5,15	4,12	0,243
	(139,09)	(3, 313)	(23,27)	(29,09)	(0, 114)	(6,1)	(4,88)	(0,205)
			Цикл	с рекупераци	ей			
R410A	185,8	4,46	32,97	41,21	0,108	5,635	4,51	0,22
R22	178,41	4,26	29,42	36,78	0,116	6,06	4,85	0,206
R134a	171.01	4.104	27.24	34.05	0.112	6.28	5.02	0.2

 Π римечание чание. q_0- удельная массовая холодопроизводительность; $l_{
m min}-$ минимальная необходимая удельная работа; l_{au}, l_{ew} – затрачиваемые удельные работы сжатия – адиабатная и действительная; η_{repa} степень термодинамического совершенства цикла; ε_{au}, ε_n — холодильные коэффициенты при адиабатном процессе сжатия и действительный; arphi - действительное значение коэффициента удельных затрат мощности Удельные значения минимальной необходимой работы для компенсации производства энтропии циклов, кДж/кг

Хпалагент	l_{\min}	$\Delta l_{\rm ink}$	$\Delta l_{ m kk}$	$\Delta l_{ m kg}$	$\Delta l_{ m дp}$	Δl_{M}	Δl_{pek}	$l^p_{ m ad}$	$\Delta l_{\mathrm{компр}}$	$l^p_{ m cm}$
Хладагент		Цин	клы с п	ромеж	уточнь	ім хлад	оноси	гелем и п	ростой	
R410A	3,618	2,11	7,357	9,467	6,96	12,137	-	32,182	8,0455	40,223
	(3,56)	(1,53)	(7,36)	(8,89)	(5,49)	(8,43)		(26,37)	(6,6)	(32,97)
R22	3,648	1,31	7,82	9,13	4,98	11,45	_	29,2068	7,3	36,5
	(3,69)	(1,08)	(7,82)	(8,91)	(3,96)	(8,53)		(25,08)	(6,27)	(31,35)
R134a	3,324	0,29	7,655	7,945	5,52	10,432	_	27,221	6,8	34,021
	(3,31)	(0,22)	(7,65)	(7,87)	(4,32)	(7,84)		(23,343)	(5,84)	(29,183)
			Цик	л с рек	уперац	ией				
R410A	4,46	6,98	7,36	14,34	1,62	11,15	2,01	33,58	8,4	41,98
R22	4,26	4,9	7,82	12,72	1,14	9,852	1,47	29,442	7,36	36,802
R134a	4,1	3,59	7,65	11,24	1,17	10,26	1,47	28,244	7,06	35,304

Этот параметр определяет минимально необходимую работу для компенсации производства энтропии при "сбиве" перегрева в конденсаторе: $\Delta l_{n\kappa} = 1,09 \text{ кДж/кг}.$

Величина $\Delta l_{\text{пк}}$ может быть вычислена непосредственно как минимальная работа для компенсации производства энтропии:

$$\begin{split} \Delta l_{\rm ink} &= T_{\rm o.c} \Delta s_{\rm ink} = T_{\rm o.c} \left[\frac{q_{\rm ink}}{T_{\rm o.c}} - (s_{2\rm al} - s_3) \right] = \\ &= T_{\rm o.c} \left[\frac{h_{2\rm al} - h_3}{T_{\rm o.c}} - (s_{2\rm al} - s_3) \right] = 300 \cdot \left[\frac{15,22}{300} - 0,0471 \right] = 1,08 \,\text{kJm/kg}. \end{split}$$

Необходимые минимальные удельные затраты работы сжатия для компенсации производства энтропии:

$$\begin{split} \Delta l_{\rm kk} &= T_{\rm o.c} \Delta s_{\rm kk} = T_{\rm o.c} q_{\rm kk} \left(\frac{1}{T_{\rm oc}} - \frac{1}{T_{\rm k}} \right) = T_{\rm o.c} (h_3 - h_4) \left(\frac{1}{300} - \frac{1}{315} \right) = \\ &= 300 \cdot (416, 58 - 252, 26) \cdot 0,0001587 = 7,82 \text{kJm}/\text{kg}. \end{split}$$

— при конденсации паров хладагента в конденсаторе; $\Delta l_{\rm дp} = T_{\rm o.c} \Delta s_{\rm дp} = 300 (s_5 - s_4) = 300 \cdot (1,188 - 1,1748) = 3,96 \text{ кДж/кг}$ — при дросселировании;

$$\begin{split} \Delta l_{\mathrm{m}} &= T_{\mathrm{o.c}} \Delta s_{q_0} = T_{\mathrm{o.c}} q_0 \left(\frac{1}{T_0} - \frac{1}{T_{\mathrm{m}}} \right) = 300 \cdot 154,45 \cdot \left(\frac{1}{278} - \frac{1}{293} \right) = \\ &= 300 \cdot 154,45 \cdot 0,00018415 = 8,53 \text{ kJm/kg} \end{split}$$

— в теплообменнике нагрузки (т.е. в испарителе) при передаче теплоты $q_0 = 154,45$ кДж/кг от криостатируемого объекта в цикле.

							1 aULINUUU
	Распредел	ение потерь г	10 узлам холог	цильной устан	новки циклов,	, %	
Хлалагент	$\Delta l_{ m m\kappa}$	$\Delta l_{ m KK}$	$\Delta l_{ m KI}$	$\Delta l_{ m ap}$	$\Delta l_{ m n}$	$\Delta l_{ m pek}$	$\Delta l_{ m kommp}$
C		Циклы с	промежуточнь	ім хладоносит	елем и просто	й	
R410A	5,245 (4,6)	18,29 (22,3)	23,54 (27,0)	17,3 (16,6)	30,17 (25,5)		20,0 (20,0)
R22	3,59 (3,5)	21,42 (24,9)	25,01 (28,4)	13,64 (12,6)	31,37 (27,2)	Ι	20,0 (20,0)
R134a	0,852 (0,75)	22,5 (26,2)	23,35 (27,0)	16,22 (14,8)	30,66 (27,0)	Ι	20,0 (20,0)
		Цикл с	с рекуперацией				
R410A	16,6	17,5	34,1	3,86	26,5	4,8	20,0
R22	13,2	21,1	34,4	3,1	26,6	4,0	20,0
R134a	10,2	21,7	32,0	3,3	29,1	4,2	20,0

Таблина 6

151

Суммируем значения минимальных работ для компенсации производства энтропии в холодильном цикле во всех элементах холодильной машины, которая в данном случае должна определить значение адиабатной работы сжатия:

$$l_{ad}^p = l_{\min} + \Delta l_{\pi\kappa} + \Delta l_{\kappa\kappa} + \Delta l_{dp} + \Delta l_{\mu} =$$

= 3,7 + 1,09 + 7,82 + 3,96 + 8,527 = 25,097 кДж/кг.

Энергетические потери в компрессоре в данном случае определяются по формуле

$$\Delta l_{
m kominp} = l_{
m cm} - l_{
m ad} = l^p_{
m ad} \Big(rac{1}{\eta_{
m ad}} - 1 \Big) = 25.1 \cdot 0.25 = 6.28 \;
m kДm/kг.$$

Расчеты для циклов с хладоносителем и с рекуператором (минимальная разность температур в рекуператоре принималась равной 5 К) проведены по тем же зависимостям, что и в предыдущем примере.

Холодопроизводительность цикла (при той же температуре T_0) можно увеличить, введя рекуперативный теплообмен, и повысить тем самым температуру и энтальпию хладагента на входе в компрессор. Регенеративный цикл применяют для высокомолекулярных хладагентов, так как эти вещества имеют относительно большие потери при дросселировании. Значение холодильного коэффициента регенеративного цикла ε_{xd} (R22) даже несколько меньше, чем ε_{xd} рассмотренного классического цикла (4,85 < 4,925), однако теоретическая холодопроизводительность цикла с рекуператором (178,41 кДж/кг) больше, чем для классического цикла (154,45 кДж/кг), таким образом, применение рекуператора требует каждый раз обоснования [4].

При энтропийно-статистическом анализе цикла следует учитывать значение производства энтропии в рекуператоре $\Delta s_{\rm pek}$. Необходимая минимальная работа сжатия для компенсации производства энтропии в рекуператоре при передаче теплоты $q_0 = 178,41$ кДж/кг от криостатируемого объекта

$$\Delta l_{\text{рек}} = T_{\text{o.c}} \Delta s_{\text{рек}} = T_{\text{o.c}} \left[(s_{1^{**}} - s_6) - (s_4 - s_{4^{**}}) \right] =$$

= 300 $\left[(1,8249 - 1,7433) - (1,1748 - 1,0981) \right] = 1,47$ кДж/кг.

Суммируем значения минимальных работ для компенсации производства энтропии в холодильном цикле во всех элементах холодильной машины, которая в данном случае должна определить значение адиабатной работы сжатия:

$$\begin{split} l_{\rm ad}^{p} &= l_{\rm min} + \sum \Delta l_{i} = l_{\rm min} + \Delta l_{\rm nk} + \Delta l_{\rm kk} + \Delta l_{\rm dp} + \Delta l_{\rm m} + \Delta l_{\rm pek} = \\ &= 4,26 + 4,9 + 7,82 + 1,14 + 9,852 + 1,47 = 29,442 \text{ kJm/kg}. \end{split}$$

152

Критерием энергетической эффективности холодильной системы (системы кондиционирования) является степень ее термодинамического совершенства $\eta_{\text{терм}}$. Поэтому необходимо обратить внимание на полученные малые значения $\eta_{\text{терм}} = 0,0914...0,118$, что объясняется общепринятыми необоснованно высокими температурными напорами в теплообменниках (15 K). При снижении температурного перепада в конденсаторе и воздухоохладителе до 10 K $\eta_{\text{терм}}$ вырастает (простой цикл, R22) до 0,1724, т.е. повышается на 46 %.

Распределение потерь (удельные значения минимальной необходимой работы для компенсации производства энтропии) по узлам холодильной установки (рис. 2–4).

Расхождение полученного расчетного значения адиабатной работы сжатия с ее значением, определенным по диаграмме (R22), для рекупе-

Рис. 2. Распределение потерь (удельные значения минимально необходимой работы для компенсации производства энтропии) по узлам холодильной установки (индекс "п" относится к "простому" циклу, индекс "х" относится к циклу с хладоносителем) (a), индекс "р" относится к циклу с рекуператором (δ), кДж/кг

Рис. 3. Распределение потерь по узлам холодильной установки для циклов: с промежуточным хладоносителем (х), простого цикла (п) и цикла с рекуператором (р), %

Рис. 4. Расчетное распределение удельных затрат электроэнергии, кДж/кг, по основным элементам холодильной установки (R22); циклы: простой (сплошные линии) и с рекуператором (штриховые линии)

154

ративного цикла — 29,442 (29,42) кДж/кг — не превышает 0,075 %; для цикла с хладоносителем ($t_0 = 0$ °C) — 29,2068 (29,42) кДж/кг — не превышает 0,72 %; для простого цикла ($t_0 = +5$ °C) — 25,08 (25,09) кДж/кг — не превышает 0,04 %, что позволяет достаточно надежно судить о реальном распределении затрат энергии по элементам исследуемых холодильных циклов.

Из сопоставления результатов анализа (табл. 6, рис. 4) распределения удельных затрат электроэнергии на компенсацию производства энтропии в узлах холодильной установки, работающей на R22, для цикла с хладоносителем ($t_0 = 0$ °C) и простого цикла ($t_0 = +5$ °C) ясно, что вклад в общую необратимость вносят процессы в испарителе – 31,37 (27,2) %, в конденсаторе – 25,1 (28,4) %, в компрессоре – 20 (20) %, в дросселе – 13,64 (12,6) %; для цикла с рекуператором вклад в общую необратимость вносят процессы в испарителе – 26,6 %, в конденсаторе – 34,4 %, в компрессоре – 20 %, в дросселе – 3,1 %, в рекуперативном теплообменнике – 4 %.

Выводы. 1. Расхождение полученных расчетных значений адиабатной работы сжатия с ее значениями, определенными по диаграмме для рассмотренных циклов, не превышает 1 %, что позволяет достаточно надежно судить о реальном распределении затрат энергии по элементам исследуемых холодильных циклов;

2. Теоретическую холодопроизводительность цикла можно увеличить, введя рекуперативный теплообмен. Значение действительного холодильного коэффициента этого цикла может быть больше (R134a) или несколько меньше (R22), чем $\varepsilon_{\rm d}$ рассмотренного классического цикла. При энтропийно-статистическом анализе цикла следует учитывать также производство энтропии в рекуператоре $\Delta s_{\rm pek}$, в том числе и по этой причине введение рекуперации требует четкого обоснования, так как не всегда бывает оправданным [4];

3. Анализ затрат энергии (потерь) в холодильной установке показывает изменение их по узлам в зависимости от хладагента и вида цикла (см. табл. 5 и 6, рис. 2–4), что позволяет в конкретных обстоятельствах акцентировать внимание на необходимость совершенствования того или иного узла установки.

Например, в простом цикле с понижением температуры кипения следует обратить внимание на повышение эффективности испарителей и дроссельных устройств (особенно R410A): применение TPB вместо капиллярных трубок.

Следует отметить, что рассматриваемые холодильные циклы — простой и с хладоносителем отличаются значением температуры кипения, поэтому все рассуждения о цикле с хладоносителем можно отнести и к низкотемпературным простым циклам с другими температурами кипения.

В цикле с рекуператором следует обратить пристальное внимание на повышение эффективности конденсаторов (R22), испарителей (R134a) и дроссельных устройств (R410A).

В настоящий момент рекомендуемые перепады температур для теплообменников в холодильной технике не увязаны с хладагентами и холодильными циклами, а определяются только рабочими температурными зонами, например стандартные условия для воздухоохладителей задаются в соответствии с ENV328 (SC1–SC4).

4. Малые значения степени термодинамического совершенства систем кондиционирования $\eta_{\text{терм}} = 0,0914...0,118$ объясняются общепринятыми высокими температурными напорами в теплообменниках.

Увлечение снижением размеров теплообменников, а следовательно, и их стоимости приводит к завышению эксплуатационных расходов.

С внедрением алюминиевых конденсаторов с микроканальной технологией появилась возможность снизить температурный напор в конденсаторах, а следовательно, и повысить энергетическую эффективность холодильных установок систем кондиционирования.

СПИСОК ЛИТЕРАТУРЫ

- Накопления / А.М. Архаров, А.И. Леонтьев, В.В. Сычев и др. // Вестник МАХ. – 2009. – Вып. 2.
- 2. А р х а р о в А. М. О некоторых особенностях термодинамического анализа низкотемпературных систем // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. – 2010. – Спец. выпуск.
- 3. А р х а р о в А. М., Ш и ш о в В. В. Энтропийно-статистический анализ классических холодильных циклов для систем кондиционирования // Холодильная техника. – 2011. – № 7.
- 4. Применение теплообменника в регенеративном холодильном цикле / В.В. Шишовидр. // Холодильная техника. 2002. № 8.

Статья поступила в редакцию 27.06.2012