## С.В. Каштанова, Н.Н. Окулова

## МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ВЯЗКОЙ ТЕПЛОПРОВОДНОЙ ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА LS-STAG

Разработан алгоритм решения задачи теплопереноса в движущейся вязкой несжимаемой жидкости, использующий идеи метода LS-STAG. Решена модельная задача о тепломассопереносе вязкой несжимаемой жидкости в квадратной каверне с подвижной верхней границей. Проведена серия расчтов при различных параметрах задачи.

## E-mail: svetlyachok.fn@gmail.com, nokulova@gmail.com

**Ключевые слова**: вязкая жидкость, теплоперенос, каверна, метод LS-STAG, стабилизированный метод бисопряженных градиентов.

**Постановка задачи.** Рассматривается течение вязкой несжимаемой теплопроводной жидкости постоянной плотности  $\rho$  в произвольной двумерной области  $\Omega^f$  с границей  $\Gamma^f$ . В области течения  $\Omega^f$  математическая модель состоит из уравнения неразрывности, уравнений Навье–Стокса и уравнения теплопроводности:

$$\nabla \cdot \vec{v} = 0, \tag{1}$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} + \nabla p - \frac{1}{\text{Re}}\Delta \vec{v} = 0, \qquad (2)$$

$$\frac{\partial T}{\partial t} + (\vec{v} \cdot \nabla)T - \frac{1}{\text{Pe}}\Delta T = 0, \qquad (3)$$

а также начальных и граничных условий для скорости течения жидкости  $\vec{v} = (u, v)$ , давления p и температуры жидкости T.

Уравнения (1)–(3) выписаны в безразмерных переменных, базис обезразмеривания включает в себя L — характерный размер области течения,  $U_0$  — характерную скорость течения жидкости,  $\nu$  — коэф-фициент кинематической вязкости,  $T_0$  — характерную температуру жидкости и  $a^2$  — коэффициент температуропроводности жидкости. В постановке (1)–(3) число Рейнольдса Re =  $U_0L/\nu$ , число Пекле Pe =  $U_0L/a^2$ , величины, имеющие размерность длины, отнесены к L, скорости — к  $U_0$ , давление — к  $\rho U_0^2$ , время — к  $L/U_0$ , температура — к  $T_0$ .

Метод решения гидродинамической задачи. Основная часть краевых задач гидродинамики не имеет аналитических решений, которые могли бы быть выписаны в явном виде даже в областях несложной формы. В этой ситуации в настоящее время является актуальным решение этих задач при помощи численных методов. Наиболее известными являются методы решения в переменных "функция тока–вихрь" [1], метод характеристик [2, 3], МАС-метод [4]. В работе [5] приведены результаты решения плоской задачи о моделировании течения вязкой несжимаемой жидкости в каверне методом SIMPLE [6], а также указаны некоторые ограничения выбранного метода решения, такие как требование совпадения границы области течения с гранями контрольных объемов основной прямоугольной сетки и его фактическая применимость только к стационарным задачам.

В данной работе для решения аналогичной задачи применен метод LS-STAG [7]. Алгоритм метода LS-STAG основан на MAC-методе для разнесенных сеток (как и алгоритм SIMPLE), но расчетная сетка не связывается с границей области. Данный метод относится к классу методов погруженных границ — прямоугольные ячейки, которые пересекаются границей области течения, усекаются в соответствии с аппроксимированной кусочно-линейной функцией границей. Таким образом, область решения представляет собой совокупность прямоугольных ячеек, не имеющих пересечений с границей области течения, и усеченных ячеек.

Для обозначения находящихся в области течения граней ячейки используются обозначения сторон света: n – север, s – юг, w – запад, e – восток. Грани, принадлежащие границе области течения, обозначаются индексом ib. Например, граница  $\Gamma_{i,j}$  трапециевидной усеченной ячейки  $\Omega_{i,j}$  (рис. 1)  $\Gamma_{i,j} = \Gamma_{i,j}^s \cup \Gamma_{i,j}^w \cup \Gamma_{i,j}^e \cup \Gamma_{i,j}^{ib}$ . Граница  $\Gamma_{i,j}^u$  смещенного контрольного объема  $\Omega_{i,j}^u$  (рис. 2)  $\Gamma_{i,j}^u = (\Gamma_{i,j}^{s,e} \cup \Gamma_{i,j}^{s,w}) \cup \Gamma_{i,j}^{u,w} \cup \Gamma_{i,j}^{u,e} \cup (\Gamma_{i,j}^{ib,e} \cup \cup \Gamma_{i,j}^{ib,w})$ .

Каждая ячейка характеризуется так называемыми коэффициентами заполнения ячейки, которые равны отношению длины грани ячейки, принадлежащей области течения, к величине пространственного шага для данной ячейки по соответствующей оси. Для граней, параллельных оси Ox, используется индекс v, для граней, параллельных оси



Рис. 1. Трапециевидная усеченная ячейка  $\Omega_{i,j}$ 



Рис. 2. Смещенная ячейка  $\Omega_{i,j}^{u}$ 

Oy – индекс u. Например, для усеченной ячейки  $\Omega_{i,j}^u$  (рис. 2):

$$\theta_{i,j}^{u} = \frac{y_{i,j}^{ib} - y_{j-1}}{\Delta y_{j}}, \quad \theta_{i-1,j}^{u} = \frac{y_{i-1,j}^{ib} - y_{j-1}}{\Delta y_{j}}, \quad \theta_{i,j-1}^{v} = 0.$$

Дискретные аналоги уравнений неразрывности (1) и Навье–Стокса (2) в интегральной формулировке

$$\int_{\Gamma} \vec{v} \cdot \vec{n} \, dS = 0; \tag{4}$$

$$\frac{d}{dt} \int_{\Omega} u \, dV + \int_{\Gamma} (\vec{v} \cdot \vec{n}) u \, dS + \int_{\Gamma} p \, \vec{e}_x \cdot \vec{n} \, dS - \frac{1}{\operatorname{Re}} \int_{\Gamma} \nabla u \cdot \vec{n} = 0; \quad (5)$$

$$\frac{d}{dt} \int_{\Omega} v \ dV + \int_{\Gamma} (\vec{v} \cdot \vec{n}) v \ dS + \int_{\Gamma} p \ \vec{e_y} \cdot \vec{n} \ dS - \frac{1}{\text{Re}} \int_{\Gamma} \nabla v \cdot \vec{n} = 0 \quad (6)$$

в прямоугольных и усеченных ячейках записываются на одном и том же пятиточечном шаблоне, при этом выполняются дискретные аналоги законов сохранения массы, импульса и кинетической энергии [7].

Дискретизация уравнения переноса теплоты. Для решения задачи теплопереноса в вязкой жидкости разработан метод численного решения уравнения переноса теплоты (3), использующий некоторые идеи методики LS-STAG. Интегрированием уравнения (3) по произвольному малому объему жидкости получается его интегральный аналог в следующем виде

$$\frac{d}{dt} \int_{\Omega} T \ dV + \int_{\Gamma} (\vec{v} \cdot \vec{n}) T \ dS - \frac{1}{\operatorname{Pe}} \int_{\Gamma} \nabla T \cdot \vec{n} \ dS = 0.$$
(7)

Далее в качестве объема интегрирования используется контрольный объем основной (усеченной или прямоугольной) ячейки  $\Omega_{i,j}$ .

Принимается, что температура T(x, y, t) характеризуется своим значением  $T_{i,j}$  в центре масс основной ячейки, аппроксимирующим температуру всюду на  $\Omega_{i,j}$ .

Интеграл в первом слагаемом уравнения (7) дискретизируется по аналогии с интегралом в первом слагаемом уравнений Навье-Стокса (5) (или (6)), с тем отличием, что рассматриваются основные ячейки, а не смещенные:

$$\int\limits_{\Omega_{i,j}} T \ dV \cong V_{i,j} T_{i,j}$$
, где  $V_{i,j}$  – объем ячейки  $\Omega_{i,j}$ .

Второе слагаемое уравнения (7), характеризующее изменение температуры, обусловленное переносом массы, дискретизируется анало-

гично  $\int_{\Gamma} (\vec{v} \cdot \vec{n}) u \, dS.$ Конвективный тепловой поток  $\int_{\Gamma_{i,j}} (\vec{v} \cdot \vec{n}) T \, dS$  представляется в ви-де суммы потоков через грани  $\Omega_{i,j}$ :

$$\int_{\Gamma_{i,j}} (\vec{v} \cdot \vec{n}) T \, dS = -\int_{\Gamma_{i,j}^w} (\vec{v} \cdot \vec{e}_x) T \, dS + \int_{\Gamma_{i,j}^e} (\vec{v} \cdot \vec{e}_x) T \, dS - \int_{\Gamma_{i,j}^s} (\vec{v} \cdot \vec{e}_y) T \, dS + \int_{\Gamma_{i,j}^n} (\vec{v} \cdot \vec{e}_y) T \, dS.$$
(8)

В данной работе рассматривается ситуация, когда граница области неподвижна и через нее не происходит течения среды. Тогда поток массы через твердую границу равен нулю  $\bar{U}_{i,j}^{ib} = 0$  а, следовательно, конвективный поток теплоты через твердую границу равен нулю и соответствующее ему слагаемое в выражении (8) отсутствует.

Каждое из слагаемых выражения (8) дискретизируется при помощи численных потоков массы через соответствующие грани  $\Omega_{i,j}$  и характерное значение температуры на этих гранях, определяемое как среднее арифметическое значений температур в двух соседних ячейках. Например, для восточной грани:

$$\int_{\substack{\gamma_{e_{i,j}}\\i_{i,j}}} (\vec{v} \cdot \vec{e_x}) T dS \cong \bar{u}_{i,j} \frac{T_{i,j} + T_{i+1,j}}{2},$$

где  $\bar{u}_{i,j} \cong \theta^u_{i,j} \Delta y_j u_{i,j}$  аппроксимирует поток массы через восточную грань  $\Omega_{i,j}$ . грань  $\Omega_{i,i}$ .

Итак, для любой основной ячейки (усеченной или прямоугольной) разностная схема для конвективного слагаемого уравнения (7) на пятиточечном шаблоне имеет вид:

$$\int_{\Gamma_{i,j}} (\vec{v} \cdot \vec{n}) T \, dS \cong C_T[\bar{U}]_W(i,j) T_{i-1,j} + C_T[\bar{U}]_E(i,j) T_{i+1,j} + C_T[\bar{U}]_P(i,j) T_{i,j} + C_T[\bar{U}]_S(i,j) T_{i,j-1} + C_T[\bar{U}]_N(i,j) T_{i,j+1}.$$

Описанная выше методика приводит к кососимметричной матрице  $C_T[\bar{U}]$ , а именно, будет выполняться:

 $C_T[ar U]_P(i,j)=0$  в силу уравнения неразрывности,

$$C_T[\bar{U}]_E(i,j) = -C_T[\bar{U}]_W(i+1,j) = \frac{\bar{u}_{i,j}}{2},$$
$$C_T[\bar{U}]_N(i,j) = -C_T[\bar{U}]_S(i,j+1) = \frac{\bar{v}_{i,j}}{2}.$$

Третье слагаемое уравнения (7),  $\int_{\Gamma} \nabla T \cdot \vec{n} \, dS$ , описывает изменение температуры, обусловленное тем, что теплота передается из более нагретых областей тела к менее нагретым. Хотя аналитически оно аналогично слагаемому  $\int_{\Gamma} \nabla u \cdot \vec{n} \, dS$  в уравнении Навье–Стокса (5), численно оно не может быть дискретизованно аналогичной методикой. Это связано с тем, что при дискретизации  $\int_{\Gamma} \nabla u \cdot \vec{n} \, dS$  введено

предположение  $\frac{\partial u}{\partial x}$  = const на смещенной ячейке, что не может быть использовано в связи со сделанным нами ранее предположении о постоянстве температуры на основной ячейке.

Диффузионный поток теплоты  $\int_{\Gamma_{i,j}} \nabla T \cdot \vec{n} \, dS$  представляется в виде суммы потоков через грани  $\Omega_{i,j}$ :

$$\int_{\Gamma_{i,j}} \nabla T \cdot \vec{n} \, dS =$$

$$= -\int_{\Gamma_{i,j}^w} \frac{\partial T}{\partial x} \, dS + \int_{\Gamma_{i,j}^e} \frac{\partial T}{\partial x} \, dS - \int_{\Gamma_{i,j}^s} \frac{\partial T}{\partial y} \, dS + \int_{\Gamma_{i,j}^n} \frac{\partial T}{\partial y} \, dS + \int_{\Gamma_{i,j}^{ib}} \frac{\partial T}{\partial \vec{n}} \, dS.$$

Разность температур в соседних ячейках будем определять через разность температур между центрами масс этих ячеек.

Например, дискретизация потока градиента температуры через восточную грань:

$$\int_{\Gamma_{i,j}^e} \nabla T \cdot \vec{n} \, dS = \int_{\Gamma_{i,j}^e} \nabla T \cdot \vec{e}_x \, dS \approx \int_{\Gamma_{i,j}^e} \frac{\partial T}{\partial \vec{e}_s} \, \vec{e}_s \cdot \vec{e}_x \, dS \cong$$
$$\cong \frac{T_{i+1,j} - T_{i,j}}{|\vec{s}|} \, \left( -\frac{\Delta x_i^m}{|\vec{s}|} \right) \, \theta_{i,j}^u \Delta y_j = \frac{(T_{i,j} - T_{i+1,j}) \, \Delta x_i^m}{(\Delta x_i^m)^2 + (y_{i,j}^m - y_{i+1,j}^m)^2} \, \theta_{i,j}^u \Delta y_j,$$

где  $\vec{s} = (x_{i,j}^m - x_{i+1,j}^m) \vec{e}_x + (y_{i,j}^m - y_{i+1,j}^m) \vec{e}_y, \ \vec{e}_s = \vec{s}/|\vec{s}|, \ \Delta x_i^m = |x_{i,j}^m - x_{i+1,j}^m| -$ проекция расстояния между центрами масс ячеек  $\Omega_{i+1,j}$  и  $\Omega_{i,j}$  на ось Ox.

Дискретизация потока градиента температуры через южную грань (через остальные грани соотношения выводятся аналогично):

$$\begin{split} \int\limits_{\Gamma^s_{i,j}} \nabla T \cdot \vec{n} \; dS &= -\int\limits_{\Gamma^s_{i,j}} \nabla T \cdot \vec{e_y} \; dS \approx -\int\limits_{\Gamma^s_{i,j}} \frac{\partial T}{\partial \vec{e_s}} \; \vec{e_s} \cdot \vec{e_y} \; dS \cong \\ &\cong -\frac{T_{i,j} - T_{i,j-1}}{|\vec{s}|} \; \left( -\frac{\Delta y^m_{j-1}}{|\vec{s}|} \right) \; \theta^v_{i,j-1} \Delta x_i = \\ &= \frac{(T_{i,j} - T_{i,j-1}) \; \Delta y^m_{j-1}}{(x^m_{i,j} - x^m_{i,j-1})^2 + (\Delta y^m_{j-1})^2} \; \theta^v_{i,j-1} \Delta x_i, \end{split}$$

где  $\vec{s} = (x_{i,j}^m - x_{i,j-1}^m)\vec{e}_x + (y_{i,j}^m - y_{i,j-1}^m)\vec{e}_y, \ \vec{e}_s = \vec{s}/|\vec{s}|, \ \Delta y_{j-1}^m = |y_{i,j-1}^m - y_{i,j}^m| -$ проекция расстояния между центрами масс ячеек  $\Omega_{i,j-1}$  и  $\Omega_{i,j}$  на ось Oy.

Поскольку градиент температуры через твердую грань предполагается известным из граничных условий, то

$$\int_{\Gamma_{i,j}^{ib}} \nabla T \cdot \vec{n}^{ib} \ dS = \int_{\Gamma_{i,j}^{ib}} \frac{\partial T}{\partial \vec{n}^{ib}} \ dS \cong \mathrm{Ki}(i,j) \Delta S_{i,j}^{ib},$$

где Кі $(i, j) = qL/\lambda\Delta T$  – значение теплообменного числа Кирпичева на твердой грани основной усеченной ячейки  $\Omega_{i,j}$ , q – тепловой поток через  $\Gamma_{i,j}^{ib}$ ,  $\Delta T$  – характерная разность температур,  $\Delta S_{i,j}^{ib}$  – длина твердой грани  $\Omega_{i,j}$ ,  $\vec{n}^{ib}$  – единичная нормаль к твердой грани ячейки.

Итак, для любой основной жидкой ячейки (усеченной или прямоугольной) разностная схема для диффузионного слагаемого на пятиточечном шаблоне имеет вид:

$$\int_{\Gamma_{i,j}} \nabla T \cdot \vec{n} \, dS \cong K_{TW}(i,j)T_{i-1,j} + K_{TE}(i,j)T_{i+1,j} + K_{TP}(i,j)T_{i,j} +$$

 $+ K_{TS}(i,j)T_{i,j-1} + K_{TN}(i,j)T_{i,j+1} + S_{Ti,j}^{ib}$ 

Описанная выше методика приводит к симметричной матрице  $K_T$ , а именно, будет выполняться:

$$K_{TP}(i,j) = \frac{\theta_{i,j}^{u} \Delta x_{i}^{m} \Delta y_{j}}{(\Delta x_{i}^{m})^{2} + (y_{i,j}^{m} - y_{i+1,j}^{m})^{2}} + \frac{\theta_{i,j}^{v} \Delta x_{i} \Delta y_{j}^{m}}{(x_{i,j}^{m} - x_{i,j+1}^{m})^{2} + (\Delta y_{j}^{m})^{2}} - \\ + \frac{\theta_{i-1,j}^{u} \Delta x_{i-1}^{m} \Delta y_{j}}{(\Delta x_{i-1}^{m})^{2} + (y_{i-1,j}^{m} - y_{i,j}^{m})^{2}} + \frac{\theta_{i,j-1}^{v} \Delta x_{i} \Delta y_{j-1}^{m}}{(x_{i,j}^{m} - x_{i,j-1}^{m})^{2} + (\Delta y_{j-1}^{m})^{2}}, \\ K_{TE}(i,j) = K_{TW}(i+1,j) = -\frac{\theta_{i,j}^{u} \Delta x_{i}^{m} \Delta y_{j}}{(\Delta x_{i}^{m})^{2} + (y_{i,j}^{m} - y_{i+1,j}^{m})^{2}}, \\ K_{TN}(i,j) = K_{TS}(i,j+1) = -\frac{\theta_{i,j}^{v} \Delta x_{i} \Delta y_{j}^{m}}{(x_{i,j}^{m} - x_{i,j+1}^{m})^{2} + (\Delta y_{j}^{m})^{2}}.$$

Постановка расчетной задачи. Для тестирования изложенной выше методики поставлена и решена нестационарная задача тепломассопереноса трансформаторного масла [8] в квадратной каверне при числе Рейнольдса Re = 100 и числе Пекле Pe = 10000. Это соответствует следующим параметрам задачи — характерный размер каверны L = 0,5 м (длина стенки каверны), характерная скорость границы  $U_0 = 0,02$  м/с (скорость верхней грани каверны), число Прандтля Pr =  $c\rho\nu/\lambda = 100$ .

Для удобства решения задачи и обработки полученных результатов расчета обезразмеривание температуры проведено следующим образом:

$$T = \frac{\bar{T} - T_{\text{лев}}}{T_{\text{прав}} - T_{\text{лев}}},$$

где  $\bar{T}$  — температура (К), T — безразмерная температура,  $T_{\text{лев}}$  и  $T_{\text{прав}}$  — температура на левой и правой стенках каверны, соответственно. При этом уравнение (3) не изменится, а тепловое число Кирпичева запишется в виде Кі =  $qL/\lambda(T_{\text{прав}} - T_{\text{лев}})$ .

В постановку задачи входят уравнения: неразрывности (1), Навье-Стокса (2) и теплопереноса (3). Поместим начало координат в левый нижний угол области и зададим граничные условия для скорости и давления следующим образом:

$$(u,v) = (1,0)$$
 при  $y = 1;$   $(u,v) = (0,0)$  на остальной части границы; $rac{\partial p}{\partial \vec{n}} = 0$  на всей границе.

Будем считать, что при t = 0 жидкость в каверне покоится, а давление во всех точках постоянное ( $p = p_0$ ). Отметим, что в такой постановке давление в области течения определено с точностью до произвольной постоянной, поэтому будем полагать p = 0 в правом верхнем углу каверны.

Гидродинамическая задача, включающая в себя уравнения (1), (2) и указанные выше граничные и начальные условия имеет своим ре-

шением выход течения жидкости на стационарный режим. Задача теплопереноса решается после того, как поля скорости и давления установятся. Начальные и граничные условия для температуры:

$$T(x, y, 0) = 0,$$
  

$$T(x, y, t)|_{x=0} = 0, \quad T(x, y, t)|_{x=1} = 1,$$
  

$$\frac{\partial T(x, y, t)}{\partial \vec{n}}\Big|_{y=0} = 0, \quad \frac{\partial T(x, y, t)}{\partial \vec{n}}\Big|_{y=1} = 0.$$

Отметим, что при заданном температурном режиме вязкость масла лежит в диапазоне  $7, 8 \cdot 10^{-6} \dots 10, 8 \cdot 10^{-6} \text{ м}^2/\text{с}$ , что позволяет принять ее постоянной.

Численная реализация. Для решения систем линейных алгебраических уравнений, получающихся в ходе реализации алгоритма LS-STAG и изложенной выше методики дискретизации уравнения переноса теплоты, используется стабилизированный метод бисопряженных градиентов (BiCGStab) с  $\alpha$ ILU предобуславливателем [9, 10]. Это современный итерационный метод, не требующий симметричности и положительной определенности матриц, а также обладающий быстрой и гладкой сходимостью. В работе [5] приведены результаты исследования по выбору оптимального значения параметра предобуславливания  $\alpha$ . Показано, что изменение  $\alpha$  в диапазоне от 0,1 до 0,4 мало влияет на скорость счета. В данной работе расчеты проводились при  $\alpha = 0, 3$ . Для ускорения счета и экономии памяти ЭВМ сборка, хранение и осуществление всех операций над матрицами проводится в сжатом формате (CSR или CSIR) [11].

Для тестирования программы, реализующей решение гидродинамической задачи была проведена серия вычислительных экспериментов при различных значениях параметров счета и задачи. Расчеты проводились на сетках до 300 × 300 узлов, во всех случаях наблюдалась монотонность решения. В таблице приведены результаты расчетов количества итераций метода BiCGStab+ $\alpha$ ILU и времени счета в зависимости от величины шага по времени  $\Delta t$  для чисел Рейнольдса Re = 100, 400 и 1000 на сетке 150 × 150 узлов. В качестве критерия останова итерационного процесса использовалась малость скорости изменения искомых величин на итерации (параметр останова итерационного процесса при решении СЛАУ  $\delta = 10^{-9}$ , параметр останова цикла по времени  $\varepsilon = 10^{-3}$ ). Из проведенного исследования следует, что оптимальным временным шагом для Re = 100 и Re = 400 является  $\Delta t = 0,01$ , для Re = 1000 оптимальный шаг  $\Delta t = 0,005$ .

Для тестирования программы, реализующей теплоперенос в установившемся течении вязкой несжимаемой жидкости в каверне, также была проведена серия вычислительных экспериментов. Например,

Таблица

| Re   | $\Delta t$ | Количество<br>шагов по<br>времени | Среднее число<br>итераций<br>BiCGStab+αILU<br>на одном шаге | Время<br>работы<br>алгоритма,<br>с | Среднее время<br>счета одного<br>шага по<br>времени, с |
|------|------------|-----------------------------------|-------------------------------------------------------------|------------------------------------|--------------------------------------------------------|
| 100  | 0,0100     | 911                               | 33                                                          | 130,4                              | 0,14                                                   |
| 100  | 0,0050     | 1563                              | 37                                                          | 246,9                              | 0,15                                                   |
| 100  | 0,0025     | 2607                              | 68                                                          | 684,2                              | 0,26                                                   |
| 400  | 0,0100     | 2183                              | 69                                                          | 591,5                              | 0,27                                                   |
| 400  | 0,0050     | 3817                              | 70                                                          | 1015,1                             | 0,27                                                   |
| 400  | 0,0025     | 6497                              | 68                                                          | 1556,6                             | 0,24                                                   |
| 1000 | 0,0100     | процесс расходится                |                                                             |                                    |                                                        |
| 1000 | 0,0050     | 5203                              | 67                                                          | 1213,6                             | 0,23                                                   |
| 1000 | 0,0025     | 9049                              | 66                                                          | 1990,8                             | 0,22                                                   |

Зависимость скорости счета от шага по времени (для сетки 150 × 150)

для гидродинамической задачи с Re = 100 и  $\Delta t = 0,01$  был проведен расчет задачи теплопереноса со следующими начальными и граничными условиями:  $T(x, y, 0) = 1, T(x, y, t)|_{\text{пев}} = 10, T(x, y, t)|_{\text{прав}} = 20,$  верхняя и нижняя грани каверны теплоизолированы. Вычисления проводились на сетке  $150 \times 150$  с числами Пекле Pe = 1, 100 и 10000. Из проведенного исследования следует, что оптимальным временным шагом для Pe = 100 и 10000 является  $\Delta t_T = 0,01$ , для Pe = 1 оптимальный временной шаг  $\Delta t_T = 0,0025$ .

Результаты расчетов. При определенных оптимальных значениях временных шагов проведен расчет поставленной выше задачи о тепломассопереносе в трансформаторном масле. Параметры проведенного расчета следующие: размер сетки  $150 \times 150$  узлов, шаги по времени в задаче гидродинамики и теплопереноса  $\Delta t = \Delta t_T = 0,01$ , критерий останова итерационного процесса решения СЛАУ  $\delta = 10^{-9}$ , параметр останова цикла по времени в задаче гидродинамики  $\varepsilon = 10^{-3}$ , параметр останова цикла по времени в задаче теплопереноса  $\varepsilon_T = 10^{-4}$ .

В работе [5] приведены диаграммы распределения направления скорости, модуля скорости и давления, полученные для числа Рейнольдса Re = 2000 методом SIMPLE. Расчеты полученные методом LS-STAG для Re = 1000, качественно не отличаются от полученных в [5]. Для количественной оценки проведено сравнение с результатами классической работы [12]. На рис. 3 приведены графики составляющих скорости u(x, 0,5) и v(0,5, y), дающие наглядное представление о характере установившегося течения. Видно хорошее согласование результатов, полученных для различных чисел Рейнольдса при помощи



Рис. 3. График составляющих скорости u(x, 0, 5) (a) и v(0, 5, y) (б) при различных числах Рейнольдса

метода LS-STAG и приведенных в [12]. Максимальная относительная погрешность составляет 0,02 % для u(x, 0,5) и 0,05 % для v(0,5, y).

На решение задачи теплопереноса затрачивается порядка 186000 шагов по времени и 346000 итераций метода BiCGStab+αILU. Графики на рис. 4 наглядно иллюстрируют процесс распространения теплоты, которая от более нагретой правой стенки переносится в сторону



Рис. 4. Температурное поле на 500 (*a*), 2000 (*б*), 5000 (*b*), 15000 (*c*) и 50000 (*d*) шаге по времени; *e* – установившееся поле (порядка 127000 шагов)

менее нагретой левой стенки, причем перенос теплоты происходит в соответствии с линиями тока. Сначала прогревается кольцевая область

вокруг центрального вихря, внешне ограниченная стенками каверны (рис. 4, a—c). Это объясняется активным круговым течением жидкости в данной области, температура распространяется за счет перемещения по кругу частиц жидкости, нагреваемых правой стенкой. Прогрев области правого вихря также происходит согласовано с прогревом кольцевой области, поскольку правый вихрь прилегает к нагретой стенке. Область левого вихря прогревается позже (рис. 4, e, c), поскольку линии тока в ней являются замкнутыми и не выходят за пределы этой области, а значит, теплоперенос осуществляется за счет молекулярной теплопроводности. Выход процесса теплопереноса на стационарный режим завершается прогревом области центрального вихря (рис. 4, c—e).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Андерсон Д., Таннехил Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. – М.: Мир, 1990. – 726 с.
- 2. Lewis R. W., Nithiarasu P., Seetharamu K. N. Fundamentals of the finite element method for heat and fluid flow. Chichester: John Wiley and Sons Ltd., 2004. 335 p.
- 3. Z e n k i e w i c z O. C., T a y l o r R. L. The finite element method. Vol. 3: Fluid dynamics. 2000. 347 p.
- 4. Флетчер К. Вычислительные методы в динамики жидкостей: В 2-х т.: Т.2.: Пер. с англ. М.: Мир, 1991. 552 с.
- 5. К а ш т а н о в а С. В., О к у л о в а Н. Н. Моделирование течения вязкой жидкости в каверне методом контрольных объемов с использованием стабилизированного метода бисопряженных градиентов // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. – Спец. выпуск "Прикладная математика". – 2011. – С. 159–168.
- 6. П а т а н к а р С. В. Численные методы решения задач теплообмена и динамики жидкостей. М.: Энергоатомиздат, 1984. 152 с.
- C h e n y Y., Botella. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties // J. Comput. Phys. 2010. № 229. P. 1043–1076.
- 8. ГОСТ 982-80. Масла трансформаторные. Технические условия. Введен 01.01.82.
- V a n d e r V o r s t H. A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear systems // SIAM J. Sci. Stat. Comp. – 1992. – No. 2. – P. 631–644.
- Пузикова В. В. Решение систем линейных алгебраических уравнений методом BiCGStab с предобуславливанием // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. – Спец. выпуск "Прикладная математика". – 2011. – С. 124–133.
- 11. Баландин М. Ю., Шурина Э. П. Методы решения СЛАУ большой размерности. Новосибирск: Изд-во НГТУ, 2000. 70 с.
- G h i a U., G h i a K. N., S h i n C. T. High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method // J. Comput. Phys. – 1982. – V. 48. – P. 387–411.

Статья поступила в редакцию 05.09.2012