УДК 533.6.011

О.А.Иванова

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ПРОВОДА ЛЭП ПОД ВОЗДЕЙСТВИЕМ ВЕТРА

Разработан численный алгоритм расчета нестационарного движения провода линии электропередачи с произвольным поперечным сечением. Аэродинамические нагрузки вычисляются в N отдельных сечениях провода методом вихревых элементов в предположении, что обтекание каждого сечения является плоскопараллельным. Разработанная программа использует технологию MPI и позволяет проводить расчеты на различных многопроцессорных вычислительных системах.

E-mail: ivanovaolgaal@mail.ru

Ключевые слова: аэроупругость, линия электропередачи, провод, метод вихревых элементов, параллельный алгоритм.

Введение. Устойчивый поперечный ветер, воздействующий на провода воздушных линий электропередачи (ЛЭП), может приводить к пляске (галопированию) проводов — их высокоамплитудным низ-кочастотным колебаниям. Чаще всего пляске подвержены провода с несимметричным гололедным отложением. Поскольку высокие динамические нагрузки на провода и арматуру ЛЭП при пляске могут привести к их повреждениям, разработка программы для прямого численного моделирования нестационарного движения провода с произвольным поперечным сечением является актуальной задачей.

Для приближенного определения нестационарных аэродинамических нагрузок, действующих на провод, применяется метод плоских сечений [1], в соответствии с которым нагрузки вычисляются в отдельных точках по длине провода в результате моделирования обтекания соответствующих профилей, а распределенная нагрузка на провод восстанавливается путем линейной интерполяции (рис. 1).

Рис. 1. Иллюстрация метода плоских сечений

Постановка задачи. Стрела провеса проводов реальных ЛЭП, как правило, не превышает 5 % длины пролета, при этом длина провода и протяженность пролета отличаются не более чем на 1 %. Поэтому в дальнейших рассуждениях длины пролета и провода считаются равными.

В качестве модели провода принята модель абсолютно гибкого стержня (нити), линейно упругого по отношению к растяжению [2]. Тогда его движение описывается следующими уравнениями:

$$\frac{\partial}{\partial\xi} \left(\frac{Q\left(\xi,\tau\right)}{1+Q\left(\xi,\tau\right)/\alpha} \frac{\partial x_{i}\left(\xi,\tau\right)}{\partial\xi} \right) + \left(1 + \frac{Q\left(\xi,\tau\right)}{\alpha}\right) q_{i}^{a}\left(\xi,\tau\right) + \delta_{i3} - \frac{\partial^{2} x_{i}\left(\xi,\tau\right)}{\partial\tau^{2}} = 0, \quad i = 1, 2, 3, \\
\left(\frac{\partial x_{1}\left(\xi,\tau\right)}{\partial\xi}\right)^{2} + \left(\frac{\partial x_{2}\left(\xi,\tau\right)}{\partial\xi}\right)^{2} + \left(\frac{\partial x_{3}\left(\xi,\tau\right)}{\partial\xi}\right)^{2} = \left(1 + \frac{Q\left(\xi,\tau\right)}{\alpha}\right)^{2}.$$
(1)

Здесь введены следующие безразмерные параметры: $\xi \in [-0,5;0,5] -$ дуговая координата на нерастянутом проводе; τ – время; $Q(\xi,\tau)$ – тяжение; α – жесткость на растяжение; $x_i(\xi,\tau)$, i = 1, 2, 3, – декартовы координаты точки провода (рис. 2); $q_i^a(\xi,\tau)$, i = 1, 2, 3, – аэродинамические нагрузки; ускорение свободного падения g сонаправлено с осью Ox_3 и его влияние в уравнениях (1) представлено слагаемым $\delta_{i3}(\delta_{ij}$ – символ Кронекера). При обезразмеривании величины, имеющие размерность длины, массы и силы, отнесены соответственно к длине L, массе и весу провода; время отнесено к $\sqrt{L/g}$. Граничные условия имеют вид

$$x_{1}(\pm 0,5,\tau) = \pm \frac{1}{2}\cos\beta, \quad x_{2}(\pm 0,5,\tau) = 0,$$

$$x_{3}(\pm 0,5,\tau) = \pm \frac{1}{2}\sin\beta,$$
(2)

где β — угол между осью Ox_1 и прямой, проходящей через концы провода (рис. 2).

Рис. 2. Расчетная схема

В качестве начального условия для системы (1) принимается решение уравнений равновесия провода в поле силы тяжести, получающихся из уравнений (1) исключением аэродинамических нагрузок и слагаемых, содержащих производные по времени. Решение может быть получено аналитически, но затем должно быть упрощено с учетом принятого допущения о длине пролета. Кроме того заметим, что для реальных проводов безразмерная жесткость на растяжение α величина порядка 10^4 , а стрела провеса $w^s = x_{30}(0)$ — величина порядка 10^{-2} . Тогда приближенная равновесная форма провода может быть представлена как

$$\begin{aligned} x_{10}(\xi) &= \cos\beta \cdot \xi, \quad x_{20}(\xi) \equiv 0, \\ x_{30}(\xi) &= \sin\beta \cdot \xi + w^s (1 - 4\xi^2), \quad Q_0(\xi) = (8w^s)^{-1}. \end{aligned}$$
(3)

Численное решение уравнений движения провода. Предположим, что $Q(\xi, \tau)$ — величина одного порядка с $Q_0(\xi)$, тогда можно принять $(1 + Q(\xi, \tau) / \alpha) q_i^a(\xi, \tau) \approx q_i^a(\xi, \tau)$, т. к. $Q_0(\xi) / \alpha \ll 1$.

Если $Q_*(\xi)$, $x_{i*}(\xi)$, i = 1, 2, 3 — решение системы (1)–(3) в момент времени τ_* , ее решение в течение малого временно́го шага $[\tau_*; \tau_* + \Delta \tau]$ может быть записано как $Q_*(\xi) + \Delta Q(\xi, \tau)$, $x_{i*}(\xi) + \Delta x_i(\xi, \tau)$, i = 1, 2, 3; изменения координат $\Delta x_i(\xi, \tau)$, i = 1, 2, 3, и изменение тяжения провода $\Delta Q(\xi, \tau)$, а также их производные по ξ , полагаются малыми, тогда, пренебрегая слагаемыми второго порядка малости, приводим систему (1) к виду

$$\left(\frac{Q_*}{1+Q_*/\alpha}x'_{i*}\right)' + \left(\frac{Q_*}{1+Q_*/\alpha}\Delta x'_i + \frac{\Delta Q}{(1+Q_*/\alpha)^2}x'_{i*}\right)' + q_i^a + \delta_{i3} - \Delta \ddot{x}_i = 0, \quad i = 1, 2, 3,$$

$$\Delta x'_1 x'_{1*} + \Delta x'_2 x'_{2*} + \Delta x'_3 x'_{3*} = \left(1 + \frac{Q_*}{\alpha}\right)\frac{\Delta Q}{\alpha}.$$

$$(4)$$

Пространственная и временная производные обозначены штрихом и точкой соответственно.

Согласно последнему уравнению системы (4), изменение тяжения явно выражается через изменения координат, поэтому его можно подставить в первые три уравнения и получить в итоге линейную систему из трех уравнений относительно трех неизвестных функций Δx_1 , Δx_2 , Δx_3

$$\left(\frac{Q_{*}}{1+Q_{*}/\alpha}x_{i*}'\right)' + \left(\frac{Q_{*}}{1+Q_{*}/\alpha}\Delta x_{i}' + \alpha\frac{\Delta x_{1}'x_{1*}' + \Delta x_{2}'x_{2*}' + \Delta x_{3}'x_{3*}'}{(1+Q_{*}/\alpha)^{3}}x_{i*}'\right)' + q_{i}^{a} + \delta_{i3} - \Delta\ddot{x}_{i} = 0, \quad i = 1, 2, 3 \quad (5)$$

с однородными граничными условиями

$$\Delta x_i (\pm 0.5, \tau) = 0, \quad i = 1, 2, 3.$$

Описанная процедура линеаризации производится на каждом шаге расчета по времени.

Система (5) методом Бубнова–Галеркина сводится к линейной системе обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами. Для этого координаты провода представляются в виде

$$x_1(\xi,\tau) = \cos\beta \cdot \xi + \sum_{k=1}^S a_k^1(\tau)\varphi_k(\xi),$$
$$x_2(\xi,\tau) = \sum_{k=1}^S a_k^2(\tau)\varphi_k(\xi),$$
$$x_3(\xi,\tau) = \sin\beta \cdot \xi + \sum_{k=1}^S a_k^3(\tau)\varphi_k(\xi),$$

где S — число базисных функций для каждой координаты. В качестве базисных функций целесообразно выбрать тригонометрические функции $\varphi_k = \sqrt{2} \sin \pi k (\xi + \frac{1}{2}).$

Тяжение провода связано с его координатами соотношением

$$Q_* = \alpha \left(\sqrt{(x'_{1*})^2 + (x'_{2*})^2 + (x'_{3*})^2} - 1 \right).$$

Использование этого выражения при вычислениях может привести к значительным осцилляциям тяжения вдоль пролета. Чтобы избежать этого нежелательного эффекта, тяжение принимается не зависящим от ξ : в положении равновесия оно известно, а после нахождения изменений координат Δx_i изменение тяжения вычисляется как

$$\Delta Q \approx \frac{\alpha}{1 + Q_*/\alpha} \int_{-1/2}^{1/2} \sum_{j=1}^{3} \Delta x'_j x'_{j*} d\xi.$$

Предполагается [3], что поворот сечений провода играет существенную роль в возбуждении пляски. Относительное угловое смещение сечений провода представляет собой сумму геометрического кручения (меры отклонения геометрической оси провода от соприкасающейся плоскости) и крутки — взаимного поворота сечений без изменения геометрии оси. Так как в рассматриваемую модель крутка как самостоятельная функция не входит, то суммарный угол поворота сечений провода в плоскости x_2Ox_3 по сравнению с положением равновесия — это угол между вектором бинормали оси провода и осью Ox_2 (в равновесном положении для всех сечений этот угол равен нулю).

Математическое моделирование обтекания профиля. Рассматривается плоская задача обтекания абсолютно жесткого подвижного профиля потоком вязкой несжимаемой среды. Движение среды описывается уравнением неразрывности

$$abla \cdot oldsymbol{V} = 0$$

и уравнением Навье-Стокса

$$rac{\partial oldsymbol{V}}{\partial t} - oldsymbol{V} imes oldsymbol{\Omega} = -
abla \left(p + rac{V^2}{2}
ight) + rac{1}{ ext{Re}}
abla^2 oldsymbol{V},$$

где введены следующие безразмерные параметры: $V(x_2, x_3, t)$ — скорость среды, $\Omega(x_2, x_3, t) = \nabla \times V = \Omega(x_2, x_3, t) e_1$ (e_1 — орт оси Ox_1) — завихренность, $p(x_2, x_3, t)$ — давление, Re — число Рейнольдса, вычисляемое по характерному размеру (диаметру) профиля d и скорости набегающего потока V_{∞} . На профиле ставится граничное условие прилипания; на бесконечности все возмущения затухают и среда имеет постоянные скорость V_{∞} и давление p_{∞} .

Для расчета обтекания профиля используется бессеточный лагранжев метод вихревых элементов, описанный в [4]. В соответствии с ним обтекание профиля описывается перемещением в области течения набора дискретных вихревых элементов. Скорость движения вихревых элементов складывается из скорости течения и диффузионной скорости, пропорциональной вязкости среды. Так как характерное число Рейнольдса для провода ЛЭП в воздушном потоке имеет порядок 10⁵, в рассматриваемой задаче диффузионной скоростью можно пренебречь. Проведенные исследования показывают, что метод вихревых элементов позволяет с достаточной точностью вычислять аэродинамические нагрузки, действующие на неподвижные и движущиеся профили различной формы [5, 6].

Алгоритм расчета аэроупругой динамики провода. Для численного моделирования нестационарной аэроупругой динамики провода разработана программа, использующая распараллеливание вычислений с помощью библиотеки МРІ. В ходе расчета моделируется плоскопараллельное обтекание N отдельных равномерно расположенных сечений провода, для чего запускается N параллельных процессов (по 1 процессу на 1 сечение). Исходными данными служат геометрия сечений провода, а также параметры расчетной схемы.

В начальный момент на провод начинает воздействовать поток воздуха, направленный противоположно оси Ox_2 . На каждом шаге расчета выполняются следующие действия. 1. Все процессы: расчет двумерного обтекания сечений в течение одного временно́го шага; вычисление аэродинамических нагрузок.

2. *Обмен данными*: пересылка всеми процессами вычисленных аэродинамических нагрузок на головной процесс.

3. Головной процесс: интерполяция аэродинамической нагрузки; вычисление методом Бубнова — Галеркина коэффициентов матрицы и правой части системы уравнений движения провода; решение системы на одном временном шаге явным методом Рунге — Кутты 4-го порядка.

4. Обмен данными: рассылка головным процессом коэффициентов a_k^1, a_k^2, a_k^3 и их производных по времени всем процессам.

5. Все процессы: вычисление новых положений и углов поворота сечений.

Отметим, что концевые сечения провода могут совершать вращательное, но не поступательное движение; аэродинамическая нагрузка q_1^a вдоль провода отсутствует; перемещение сечений провода Δx_1 непосредственно не моделируется.

Пример. Выполнен тестовый расчет для N = 16 сечений в форме полукруга для провода со следующими безразмерными параметрами: $w^s \approx 0.027$, $\alpha \approx 9.6 \cdot 10^4$, $\beta = 0$; скорость ветра $V_{\infty} = 300$; временной шаг расчета $\Delta \tau = 3.6 \cdot 10^{-5}$; профиль каждого сечения провода моделируется 162 отрезками-панелями; число базисных функций S = 8.

Было сделано примерно 100000 временны́х шагов, что в размерных величинах соответствует 10 секундам физического времени. Число вихревых элементов, моделирующих след за каждым сечением, составляло около 4000. На рис. 3 приведена траектория сечения с координатой $\xi = 1/30$, близкого к середине пролета (9 сечение); на рис. 4 показан вихревой след за этим сечением в момент t = 2 с. Для наглядности на рис. 3 приведены размерные координаты, соответствующие проводу длиной 75 м.

Рис. 3. Траектория одного сечения провода. Точки на графике соответствуют интервалам времени 0,1 с

Рис. 4. Вихревой след за одним сечением провода в момент времени t=2 с

Заключение. С применением технологии параллельного программирования MPI разработана программа, позволяющая эффективно проводить расчеты аэроупругой динамики провода в потоке на различных многопроцессорных вычислительных системах. Время расчета может оказаться достаточно большим: в приведенном примере моделирование 1 с движения провода занимает 1 ч. Наиболее трудоемкая часть алгоритма — моделирование обтекания сечений провода. Очевидным способом уменьшения времени расчета, если доступно достаточное количество вычислительных ядер, представляется использование 2, 3 или большего числа процессов для моделирования обтекания каждого сечения. Процедура параллельного расчета обтекания профиля хорошо отработана [6] и не представляет принципиальных трудностей. Также время расчета может быть сокращено за счет уменьшения области моделирования вихревого следа и, следовательно, сокращения числа вихревых элементов в следе.

Математическую модель движения провода можно обобщить, например, введя в рассмотрение крутку провода в качестве дополнительной неизвестной функции. Изменение модели провода в разработанной программе может быть сделано достаточно просто, т.к. для этого требуется изменить только п. 3 алгоритма, в то время как остальные этапы остаются неизменными. Точность численного решения уравнений движения провода может быть повышена в результате замены тригонометрических базисных функций на собственные функции малых колебаний провода, предварительно найденные каким-либо приближенным методом.

Автор благодарит Межведомственный суперкомпьютерный центр РАН за предоставленную возможность использования кластера MBC-100к.

Работа выполнена при поддержке гранта Президента РФ для государственной поддержки молодых российских ученых — кандидатов наук (проект MK-6482.2012.08).

СПИСОК ЛИТЕРАТУРЫ

- 1. Д е в н и н С. И. Аэрогидромеханика плохообтекаемых конструкций. Л.: Судостроение, 1983. 331 с.
- 2. С в е тлицкий В. А. Механика абсолютно гибких стержней / Под ред. А.Ю. Ишлинского. М.: Изд-во МАИ, 2001. 432 с.
- 3. N i g o 1 O., B u c h a n P. G. Conductor Galloping // IEEE Transactions on Power Apparatus and Systems. 1981. V. PAS–100, № 2. P. 699–720.
- 4. Андронов П. Р., Гувернюк С. В., Дынникова Г. Я. Вихревые методы расчета нестационарных гидродинамических нагрузок. М.: Изд-во МГУ, 2006. 184 с.
- 5. Марчевский И.К., Иванова О.А. Численное моделирование ветрового резонанса кругового профиля методом вихревых элементов // Проблемы машиностроения и надежности машин. – 2009. – № 5. – С. 8–12.
- 6. Марчевский И.К., Морева В.С. Параллельный программный комплекс POLARA для моделирования обтекания профилей и исследования расчетных схем метода вихревых элементов. Параллельные вычислительные технологии (ПаВТ'2012): Труды международной научной конференции (Новосибирск, 26 марта 30 марта 2012 г.). Челябинск: Изд. ЮУрГУ, 2012. С. 236–247.

Статья поступила в редакцию 05.09.2012