В.С. Зарубин, М.М. Лукашин

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ЗАТВЕРДЕВАНИЯ ТЕПЛОНОСИТЕЛЯ ВНУТРИ ТРУБЧАТОГО ЭЛЕМЕНТА МЕТОДОМ СКВОЗНОГО РЕШЕНИЯ ЗАДАЧИ СТЕФАНА

Предложен численный метод решения задачи Стефана, использующий вспомогательные функции: объемной плотности внутренней энергии и Кирхгофа. Это позволяет найти нестационарное температурное поле в области с подвижной границей раздела фаз путем сквозного счета. Метод применен для расчета затвердевания жидкометаллического теплоносителя в трубчатом элементе.

E-mail: zarubin@bmstu.ru, mixail.lukashin@mail.ru

Ключевые слова: задача Стефана, фазовый переход, плотность внутренней энергии, функция Кирхгофа, раздел фаз

Область решения задачи. Внутри трубчатого элемента, радиус внутренней поверхности которой *R*, находится теплоноситель.

Если считать теплоноситель неподвижным, что является более жестким условием по сравнению с действительностью, и не учитывать изменение температуры вдоль оси трубки, то расчет процесса затвердевания жидкометаллического теплоносителя можно свести к решению одномерной осесимметричной задачи Стефана.

Математическая формулировка задачи Стефана. Нестационарное температурное поле для каждой из фаз теплоносителя удовлетворяет одномерному нелинейному уравнению теплопроводности

$$c(T)\frac{\partial T(t,r)}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(\lambda(T)r\frac{\partial T(t,r)}{\partial r}\right),\tag{1}$$

где T(t,r) — искомая зависимость температуры от времени и радиальной координаты r, отсчитываемой от оси трубки; c(T), $\lambda(T)$ — зависящие от температуры объемная теплоемкость и теплопроводность теплоносителя. Примем, что на внешней границе постоянно поддерживается температура T_1 , т.е. граничные условия имеют вид

$$T(t,R) = T_1, \left. \frac{\partial T(t,r)}{\partial t} \right|_{r=0} = 0.$$
(2)

Пусть в начальный момент времени t=0 температура теплоносителя равна T_0 , т.е. начальным условием является

$$T(0,r) = T_0.$$
 (3)

На движущейся границе между твердой и жидкой фазами теплоносителя, имеющей зависящую от времени радиальную координату $\xi(t)$, имеем $T(t,\xi(t)) = T^*$, где T^* — температура затвердевания теплоносителя, а из условия баланса тепловой энергии получим

$$\lambda_{\mathfrak{K}} \left. \frac{\partial T(t,r)}{\partial r} \right|_{r=\xi(t)} + \kappa \frac{d\xi(t)}{dt} = \lambda_T \left. \frac{\partial T(t,r)}{\partial r} \right|_{r=\xi(t)}, \tag{4}$$

где $\lambda_{\mathbb{K}}$ и λ_T — значения теплопроводности теплоносителя при $T = T^*$ в жидкой и твердой фазах соответственно, а κ — тепловая энергия, выделяющаяся при затвердевании единицы объема теплоносителя.

Введение вспомогательных функций. Основная трудность решения задачи Стефана связана с необходимостью нахождения из условия (4) скорости $v = d\xi(t)/dt$ движения границы раздела фаз. Этого можно избежать, если ввести функцию объемной плотности внутренней энергии [1]

$$C(T) = \int_{T_*}^{T} (c(u) + \kappa \delta(u - T^*)) du$$
 (5)

и Кирхгофа

$$\Lambda(T) = \int_{T_*}^T \lambda(u) du,$$
(6)

где T_* — нижняя грань множества ожидаемых значений температуры в рассматриваемой задаче, а $\delta(u - T^*)$ — дельта-функция Дирака, обладающая при $T^* \in (T_*, T)$ свойством

$$\int_{T_*}^T \delta(u - T^*) du = 1.$$

Если объемная теплоемкость теплоносителя явно не зависит от времени, а его теплопроводность явно не зависит от радиальной координаты, т.е. твердая и жидкая фазы в рассматриваемой области являются однородными, то (1) с учетом (5) и (6) примет вид [2]

$$\frac{\partial C}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Lambda}{\partial r} \right) \tag{7}$$

и будет содержать две неизвестные функции C и $\Lambda,$ зависящие от t и r.

Так как $\lambda(T) > 0$ и эта функция может иметь при $T = T^*$ лишь конечный разрыв, то функция $\Lambda(T)$ является непрерывной и возрастающей, а поэтому имеет также непрерывную обратную функцию $T(\Lambda)$. Тогда можно построить композицию функций $C_1(\Lambda) = C(T(\Lambda))$, что позволяет вместо (7) записать

$$C_1'(\Lambda) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Lambda}{\partial r} \right), \tag{8}$$

где $C'_1(\Lambda) = \partial C_1(\Lambda) / \partial \Lambda$. Теперь граничные и начальное условия (2) и (3) изменятся и для искомой функции примут вид

$$\Lambda(t,R) = \int_{T_*}^{T_1} \lambda(u) du , \left. \frac{\partial \Lambda(t,r)}{\partial t} \right|_{r=0} = 0$$
(9)

И

$$\Lambda(0,r) = \int_{T_*}^{T_0} \lambda(u) du \tag{10}$$

соответственно. Можно показать [3], что решение задачи (8)—(10), представленное в виде функции T(r,t), будет удовлетворять условию (4), если слагаемое $\kappa \frac{d\xi(t)}{dt}$ рассматривать как скорость изменения внутренней энергии при фазовом превращении.

Построение разностной схемы. Введем конечно-разностную сетку с шагом Δt по времени и шагом Δr по радиальной координате. Тогда, аппроксимировав (8) в соответствии с явной конечно-разностной схемой, запишем

$$C_1'(\Lambda_i^j)\frac{\Lambda_i^{j-1} - \Lambda_i^j}{\Delta t} = \frac{r_{i+1/2}(\Lambda_{i+1}^j - \Lambda_i^j) + r_{i-1/2}(\Lambda_{i-1}^j - \Lambda_i^j)}{r_i(\Delta r)^2}, \quad (11)$$

где верхний индекс j у узлового значения Λ_i^j искомой функции $\Lambda(t,r)$ указывает номер шага по времени, а нижний индекс i — номер узла конечно-разностной сетки по радиальной координате.

Эта схема имеет погрешность $O((\Delta r)^2, \Delta t)$ [1].

Устойчивость явной конечно-разностной схемы будет обеспечена, если в (11) коэффициент при Λ_i^j не будет по абсолютному значению превосходить единицу, т.е.

$$\left|1-\frac{2\Delta t}{C_1'(\Lambda_i^j)(\Delta r)^2}\right|\leqslant 1.$$

Чтобы при неизменных во времени граничных условиях расчетные значения температуры не совершали физически не реализуемых колебаний, этот коэффициент не должен быть отрицательным [3]. Это накладывает ограничение на выбор шага по времени в виде неравенства

$$\Delta t \leqslant \frac{(\Delta r)^2}{4} \min(C_1'(\Lambda)).$$
(12)

Пример расчета. При проведении расчета по приведенной выше конечно-разностной схеме были использованы следующие исходные данные.

 $T_1 = 100^{\circ}\text{C}$ — температура на внешней границе, $T_2 = 550^{\circ}\text{C}$ — начальная температура, R = 0.012 м — внешний радиус, $t = 0 \dots 4000$, с — временной интервал, материал — свинец (чистый).

Характеристики свинца c(T)и $\lambda(T)$ приведены на рис. 1 и рис. 2. Используя (5) и (6), находим зависимости C(T) и $\Lambda(T)$ (рис. 3 и 4).

Рис. 3. График функции объемной плотности внутренней энергии C(T)

Рис. 5. График функции $C(\Lambda)$

Затем находим зависимость $C(\Lambda)$ (рис. 5) Задаемся количеством разбиений по радиусу

$$N = 30,$$

соответственно

$$\Delta r = 0,0004$$
м.

В соответствии с условием устойчивости (12) находим шаг разбиения по времени

$$\Delta t = 1,176$$
 c;

соответственно количество разбиений по времени

$$M = 3349.$$

Проводим численное решение и получаем зависимость $\Lambda(r,t)$ (рис. 6).

Затем переходим от функци
и $\Lambda(r,t)$ к функции температуры T(r,t) (рис. 7).

Наконец, находим закон движения фронта затвердевания (радиус проходного сечения для жидкой фазы) как сечение функции T(r,t) плоскостью $T = T_{\text{плавл}} = T_{\text{затв}} = 327,4$ °C (рис. 8).

Рис. 7. Функция температуры T(r,t)

Заключение. Метод сквозного счета, примененный в данной работе, позволяет решать задачу Стефана без выделения фронта затвердевания, что дает возможность отказаться от нахождения решений в 2-х и более областях с подвижными границами [4].

При данном подходе можно успешно решать задачи, содержащие несколько движущихся границ раздела фаз и изменяющиеся во времени граничные условия. Также возможно учесть эффект шуги, когда материал переходит из одного состояния в другое не при температуре $T = T_{\rm плавл} = T_{\rm затв}$, а в некотором небольшом интервале темпера-

Рис. 8. Закон движения фронта затвердевания $R_3(t)$

тур $T = T_{\text{нач}}$. . $T_{\text{кон}}$. Для этого достаточно дельта-функцию Дирака $\delta(u - T^*)$ в (6) заменить на плавную функцию $F(u - T^*)$, удовлетворяющую условию

$$\int\limits_{T_*}^T F(u-T^*)du = 1.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. З а р у б и н В. С. Инженерные методы решения задач теплопроводности. М.: Энергоатомиздат, 1983. 328 с.
- 2. З а р у б и н В. С. Температурные поля в конструкции летательных аппаратов (Методы расчета) / Изд. 2-е, перераб. и доп. М.: Машиностроение, 1978. 184 с.
- 3. 3 а р у б и н В. С. Температурные поля в конструкции летательных аппаратов. – М.: Машиностроение, 1966. – 216 с.
- 4. Ильин В. П., Попов В. Н. Об одной разностной схеме для численного решения двумерной задачи Стефана. Новосибирск: ВЦ СО АН СССР, 1991. 24 с.

Статья поступила в редакцию 05.09.2012