В. С. Зарубин, Г. Н. Кувыркин, И. Ю. Савельева

ЭФФЕКТИВНЫЙ КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ КОМПОЗИТА ПРИ НЕПРЕРЫВНОМ ИЗМЕНЕНИИ ТЕПЛОПРОВОДНОСТИ ПРОМЕЖУТОЧНОГО СЛОЯ МЕЖДУ ШАРОВЫМИ ВКЛЮЧЕНИЯМИ И МАТРИЦЕЙ

Построена математическая модель переноса тепловой энергии в композите с включениями шаровой формы (в общем случае в виде полых шаров). Между включением и матрицей предполагается наличие промежуточного слоя, в котором коэффициент теплопроводности изменяется непрерывно между его значениями для включения и матрицы. Получены оценки эффективного коэффициента теплопроводности такого композита, в том числе с применением двойственной формулировки вариационной задачи стационарной теплопроводности в неоднородном твердом теле. Проведенный параметрический анализ позволил установить области применения найденных оценок, которые могут быть использованы для прогноза эффективного коэффициента теплопроводности композитов, в частности, модифицированных наноструктурными элементами

E-mail: zarubin@bmstu.ru, gnk1914@mail.ru, inga_fn2@mail.ru

Ключевые слова: композит, эффективный коэффициент теплопроводности, включение, матрица, промежуточный слой

Реализация возможности модификации композитов наноструктурными элементами (в том числе фуллеренами), имеющими высокие механические характеристики, позволит улучшить макроскопические характеристики композитов в целом как конструкционных материалов. Для теплонапряженных конструкций, испытывающих одновременно как механические, так и тепловые воздействия, помимо информации о механических характеристиках композита необходимо располагать данными и о его теплофизических свойствах (в частности, о коэффициенте теплопроводности). Эффективное значение коэффициента теплопроводности композита, модифицированного наноструктурными элементами, зависит от их объемной концентрации C_V , от соотношения между коэффициентами теплопроводности матрицы и применяемых при модификации элементов, а также от условий теплового контакта между этими элементами и матрицей. Эти условия могут быть связаны с возможным химическим взаимодействием включения и матрицы, приводящим к образованию между ними промежуточного слоя, коэффициент теплопроводности которого будет отличаться от коэффициентов теплопроводности как включения, так и матрицы.

В данной работе ограничимся рассмотрением композита, модифицированного элементами в виде полого шара, который можно считать допустимым приближением к геометрической форме фуллерена [1]. Известно [2], что фуллерены при определенных условиях могут взаимодействовать с материалом полимерной матрицы. В этом случае атомы углерода устанавливают химические связи с атомами и молекулами, входящими в состав матрицы, что приводит к образованию промежуточного слоя между фуллереном и матрицей. Такой слой может возникнуть и при модификации композита включениями иной природы.

Математическую модель переноса тепловой энергии в композите построим в предположении, что шаровые включения в общем случае не контактируют между собой, т.е. отделены друг от друга слоем материала матрицы. Композит считаем состоящим из множества составных шаровых частиц с наружным радиусом R_2 , каждая из которых включает полый шар с наружным радиусом R₁, окруженный промежуточным шаровым слоем толщиной $R_* - R_1$, и шарового слоя толщиной R₂ - R_{*} из материала матрицы. Примем, что такая составная частица является представительным элементом структуры композита и в тепловом отношении взаимодействует с неограниченным массивом однородного материала, коэффициент теплопроводности λ которого подлежит определению как эффективная характеристика композита. Таким образом, модель композита содержит четыре фазы: включение, промежуточный слой, слой матрицы и неограниченный массив однородного материала. При этом отношение R_1^3/R_2^3 будем считать объемной концентрацией С_V включений в композите.

Рассмотрим тепловое взаимодействие отдельно взятой составной частицы и окружающего ее однородного материала, полагая коэффициенты теплопроводности λ_1 и λ_2 материалов соответственно полого шара и матрицы заданными, а коэффициент теплопроводности промежуточного слоя непрерывно изменяющимся между значениями λ_1 и λ_2 . Тепловой контакт на каждой из сферической поверхности, разделяющей контактирующие фазы, примем идеальным.

Центр полого шара с внутренним радиусом R_0 поместим в начале сферической системы координат. Примем, что на большом расстоянии $r \gg R_2$ от начала координат задан вектор градиента температурного поля в однородном материале, направленный по оси сферической системы координат, от которой происходит отсчет угловой координаты θ , т.е. при $r \to \infty$ установившееся распределение температуры в этом материале описывает функция $T_{\infty}(r, \theta) = Gr \cos \theta$, где G — модуль вектора градиента. Эта функция удовлетворяет уравнению Лапласа,

которое в сферических координатах имеет вид

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial T}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 T}{\partial\varphi^2} = 0.$$
 (1)

В данном случае благодаря параллельности заданного вектора градиента температурного поля и оси отсчета угловой координаты θ распределение температуры симметрично относительно этой оси и не зависит от угловой координаты φ , т.е. $\partial^2 T / \partial \varphi^2 \equiv 0$.

По мере приближения к составной шаровой частице температурное поле в однородном материале претерпевает возмущение, описываемое также удовлетворяющим уравнению (1) дополнительным слагаемым [3] $\Delta T(r, \theta) = (B/r^2) \cos \theta$, где B — подлежащий определению постоянный коэффициент, зависящий от параметров этой частицы и искомого коэффициента теплопроводности λ . Замена составной шаровой частицы равновеликим шаром радиусом R_2 , имеющим коэффициент теплопроводности λ , приведет к исчезновению возмущения температурного поля в окружающем ее однородном материале с тем же значением λ , что равносильно условию B = 0, позволяющему установить связь искомого коэффициента теплопроводности с заданными параметрами этой частицы.

Для получения зависимости коэффициента B от параметров составной частицы необходимо решить задачу теплового взаимодействия этой частицы и окружающего ее однородного материала. Температурное поле в однородном материале, удовлетворяющее заданному условию при $r \to \infty$ и уравнению (1), описывает функция

$$T(r,\theta) = T_{\infty}(r,\theta) + \Delta T(r,\theta) = (Gr + B/r^2)\cos\theta.$$
 (2)

Аналогичные зависимости описывают распределения температуры в шаровом включении

$$T_1(r,\theta) = (A_1r + B_1/r^2)\cos\theta,$$
(3)

и в слое материала матрицы

$$T_2(r,\theta) = (A_2r + B_2/r^2)\cos\theta.$$
(4)

В промежуточном слое с зависящим от радиальной координаты r коэффициентом теплопроводности $\lambda_*(r)$ распределение температуры $T_*(r, \theta)$ должно удовлетворять дифференциальному уравнению

$$\frac{\partial}{\partial r} \left(\lambda_* r^2 \, \frac{\partial T_*}{\partial r} \right) + \frac{\lambda_*}{\sin \theta} \, \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial T_*}{\partial \theta} \right) = 0. \tag{5}$$

Положим $T_*(r, \theta) = f(r) \cos \theta$ и после подстановки в уравнение (5) получим однородное обыкновенное дифференциальное уравнение (ОДУ)

$$f'' + (2/r + \lambda'_* r/\lambda_*)f' - (2/r^2)f = 0$$
(6)

второго порядка относительно неизвестной функции f(r) (штрих означает производную по r).

Непрерывное изменение коэффициента теплопроводности промежуточного слоя представим зависимостью $\lambda_*(r) = \lambda^* \exp(ar)$, удовлетворяющую условиям $\lambda_1 = \lambda^* \exp(aR_1)$ и $\lambda_2 = \lambda^* \exp(aR_*)$, из которых следует $aR_1 = -(\ln \bar{\lambda})/(\bar{R}_* - 1)$ и $\lambda^* = \lambda_1 \exp(aR_1)$, где $\bar{\lambda} = \lambda_1/\lambda_2$ и $\bar{R}_* = R_*/R_1$. Тогда ОДУ (6) можно представить в виде (f' + (a+2/r)f)' = 0 и после интегрирования получить ОДУ $f' + (a + 2/r)f = A_* = \text{const}$ первого порядка, решением которого будет [4]

$$f(r) = \left(B_* + A_* \int e^{F(r)} dr\right) e^{-F(r)}, \quad F(r) = \int (a + 2/r) dr = ar + 2\ln r,$$

где $B_* = \text{const.}$ Если учесть, что

$$\int e^{F(r)} dx = \int r^2 e^{ar} dr = \left(\frac{r^2}{a} - \frac{2r}{a^2} + \frac{2}{a^3}\right) e^{ar},$$

то в итоге распределение температуры в промежуточном слое примет вид

$$T_*(r,\theta) = (A_*/a)(1 - 2/(ar) + 2/(ar)^2)\cos\theta + (B_*/r^2)e^{-ar}\cos\theta.$$
 (7)

В равенства (2)... (4) и (7) входят 7 неизвестных коэффициентов $B, A_1, B_1, A_2, B_2, A_*$ и B_* , которые необходимо найти из граничных условий на сферических поверхностях с радиусами R_0, R_1, R_* и R_2 . При $r = R_0$ из условия отсутствия теплообмена в полости шарового включения с учетом равенства (3) получим

$$\left. \frac{\partial T_1}{\partial r} \right|_{r=R_0} = \left(A_1 - 2B_1 / R_0^3 \right) \cos \theta = 0,$$

или

$$A_1 = 2B_1/R_0^3. (8)$$

При $r = R_1$ из условий непрерывности плотности теплового потока и распределения температуры следует

$$T_1'|_{r=R_1} = T_*'|_{r=R_1}$$
 и $T_1(R_1,\theta) = T_*(R_1,\theta).$

Отсюда с использованием равенств (3) и (7) находим

$$A_{1} - \frac{2B_{1}}{R_{1}^{3}} = A_{*} \left(\frac{2}{\alpha^{2}} - \frac{4}{\alpha^{3}} \right) - B_{*} \frac{2 + \alpha}{R_{1}^{3}} \varepsilon,$$

$$A_{1} + \frac{B_{1}}{R_{1}^{3}} = A_{*} \left(1 - \frac{2}{\alpha} + \frac{2}{\alpha^{2}} \right) + \frac{B_{*} \varepsilon}{R_{1}^{3}},$$
(9)

где $\alpha = aR_1$ и $\varepsilon = \exp(-\alpha)$. Из аналогичных условий при $r = R_*$ с

учетом формул (4) и (7) следует

$$A_*\left(\frac{2}{\alpha_*^2} - \frac{4}{\alpha_*^3}\right) - B_*\frac{2+\alpha}{R_*^3}\varepsilon_*, \quad A_*\left(1 - \frac{2}{\alpha} + \frac{2}{\alpha^2}\right) + \frac{B_*\varepsilon_*}{R_*^3} = A_2 + \frac{B_2}{R_*^3},$$
(10)

где $\alpha_* = \alpha \bar{R}_*$ и $\varepsilon_* = \exp(-\alpha_*)$. Наконец, из подобных условий при $r = R_2$ и соотношений (2) и (4) получим

$$A_2 - 2B_2/R_2^3 = \widetilde{\lambda}(G - 2B/R_2^3)$$
 и $A_2 + B_2/R_2^3 = G + B/R_2^3$, (11)
где $\widetilde{\lambda} = \lambda/\lambda_2$.

Последовательным исключением из равенств (8)...(11) неизвестных коэффициентов можно получить выражение для коэффициента B, которое является весьма громоздким. Из условия B = 0 следует

$$\widetilde{\lambda} = \frac{\lambda}{\lambda_2} = \frac{\alpha_* (P_1 \overline{\lambda} - P_2(\alpha_* - 1)) + \overline{R}^3_* (2P_1 \overline{\lambda}(3 + \alpha_*) + P_2 P_3) C_V}{\alpha_* (P_1 \overline{\lambda} - P_2(\alpha_* - 1)) - \overline{R}^3_* (2P_1 \overline{\lambda}(3 + \alpha_*) + P_2 P_3) C_V / 2},$$
(12)

где $P_1 = 4\alpha - \alpha^2 - 6 + (R_0/R_1)^3 \alpha(\alpha - 1)$, $P_2 = 6 + 2\alpha + \alpha(R_0/R_1)^3$ и $P_3 = \alpha_*^2 - 4\alpha_* + 6$. Формула (12) сохраняет смысл при условии $C_V \leq C_V^* = (R_1/R_*)^3$, поскольку при $C_V = C_V^*$ в составной частице уже отсутствует шаровой слой матрицы. В частном случае отсутствия промежуточного слоя ($\bar{R}_*^3 = 1$) равенство (12) при $R_0 = 0$ путем предельного перехода при $\alpha \to \infty$ можно привести к известной формуле Максвелла [3]

$$\widetilde{\lambda} = \frac{2 + \lambda - 2(1 - \lambda)C_V}{2 + \overline{\lambda} + (1 - \overline{\lambda})C_V},$$

полученной на основе более простой двухфазной модели, состоящей из включения в виде сплошного шара и окружающего его материала матрицы.

Для оценки возможной погрешности формулы (12) используем двойственную вариационную формулировку задачи стационарной теплопроводности [5, 6], позволяющую получить двусторонние оценки эффективного коэффициента теплопроводности рассматриваемого композита. Область V, содержащую представительный элемент в виде половины составной частицы радиусом R_2 , выберем в виде прямого цилиндра с достаточно большой площадью S_0 параллельных оснований, одно из которых соответствует в сферических координатах значению $\theta = \pi/2$, а точки второй имеют координаты $r \cos \theta = H$, т.е. высота цилиндра равна H, причем $H \gg R_2$. Боковую поверхность цилиндра примем идеально теплоизолированной, температуру основания при $\theta = \pi/2$ положим равной нулю, а на втором основании зададим температуру GH. Однородный материал в части области вне составной частицы имеет коэффициент теплопроводности λ . Таким образом, в неоднородной цилиндрической области объемом $V_0 = HS_0$, ограниченной поверхностью S, распределение температуры T(M) и коэффициент теплопроводности $\Lambda(M)$ являются функциями координат точки $M \in V$, причем непрерывная функция $\Lambda(M)$ принимает значения λ_1 при $r \leq R_1$, λ_2 при $R_* \leq r \leq R_2$ и λ при $r \geq R_2$, а при $r \in (R_1, R_*)$ определена зависимостью $\lambda_*(r) = \lambda_1 \exp(a(r - R_1))$.

Примем в качестве допустимого для минимизируемого функционала [5]

$$J[T] = \frac{1}{2} \int_{V} \Lambda(M) \left(\nabla T(M) \right)^2 dV(M), \tag{13}$$

где ∇ — дифференциальный оператор Гамильтона, линейное по высоте цилиндра распределение температуры с постоянной составляющей градиента *G*. В этом случае из формулы (13) получим

$$J_{1}[T] = \frac{G^{2}}{2} \left(\lambda HS_{0} - \frac{2\pi R_{2}^{3}}{3} \lambda + 2\pi \frac{R_{2}^{3} - R_{*}^{3}}{3} \lambda_{2} + 2\pi \int_{R_{1}}^{R_{*}} \lambda_{*}(r)r^{2} dr \int_{0}^{\pi/2} \sin \theta \, d\theta + 2\pi \frac{R_{1}^{3} - R_{0}^{3}}{3} \lambda_{1} \right).$$
(14)

Для максимизируемого функционала [5]

$$I[\mathbf{q}] = -\frac{1}{2} \int_{V} \frac{\left(\mathbf{q}(M)\right)^{2}}{\Lambda(M)} dV(M) - \int_{S} T(P)\mathbf{q}(P) \cdot \mathbf{n}(P) dS(P), \quad P \in S, \quad (15)$$

где n — единичный вектор внешней нормали к поверхности S, в качестве допустимого распределения вектора плотности теплового потока q примем постоянное значение $q = -\lambda G$ единственной составляющей этого вектора, перпендикулярной основаниям цилиндра. Тогда формула (15) примет вид

$$I_{1}[q] = -\frac{(\lambda G)^{2}}{2} \left(\frac{HS_{0} - 2\pi R_{2}^{3}/3}{\lambda} + 2\pi \frac{R_{2}^{3} - R_{*}^{3}}{3\lambda_{2}} + 2\pi \int_{R_{1}}^{R_{*}} \frac{r^{2} dr}{\lambda_{*}(r)} \int_{0}^{\pi/2} \sin \theta \, d\theta + 2\pi \frac{R_{1}^{3} - R_{0}^{3}}{3\lambda_{1}} \right) + \lambda G^{2} HS_{0}.$$
 (16)

Принятые допустимые распределения температуры и плотности теплового потока для неоднородной области отличаются от действительных и поэтому значения $J_1[T]$ и $I_1[q]$ не будут совпадать, причем $J_1[T] > I_1[q]$. В промежутке между этими значениями должно быть

расположено и значение $J_0 = (\lambda/2)G^2HS_0$ минимизируемого функционала (12) для однородной области с коэффициентом теплопроводности λ . Тогда при $(R_1/R_2)^3 = C_V$ с учетом формулы (14) из условия $J_1[T] \ge J_0$ получим

$$\begin{split} \widetilde{\lambda} &\leqslant 1 - \bar{R}_*^3 C_V + \bar{\lambda} (1 - R_0^3 / R_1^3) C_V + \\ &+ \frac{3C_V}{\alpha} \bigg(\bar{R}_*^2 - \bar{\lambda} + 2 \frac{\bar{R}_* - \bar{\lambda}}{\alpha} + 2 \frac{1 - \bar{\lambda}}{\alpha^2} \bigg) = \widetilde{\lambda}_+, \end{split}$$

а при использовании формулы (16) из условия $I_1[q] \leqslant J_0$ найдем

$$\begin{split} \frac{1}{\widetilde{\lambda}} &\leqslant 1 - \bar{R}_*^3 C_V + C_V \frac{1 - R_0^3 / R_1^3}{\bar{\lambda}} + \frac{3C_V}{\bar{\lambda}\alpha} \left(1 + \frac{2}{\alpha} + \frac{2}{\alpha^2} \right) - \\ &- \frac{3C_V}{\alpha} \left(\bar{R}_*^2 + \frac{2\bar{R}_*}{\alpha} + \frac{2}{\alpha^2} \right) = \frac{1}{\tilde{\lambda}_-}. \end{split}$$

Для примера расчета примем $R_*^3 = 2R_1^3$, т.е. $C_V^* = 0.5$ и $\bar{R}_* \approx 1,260$. На рис. 1 для случая $R_0 = 0$ при различных значениях $\bar{\lambda}$ приведены графики зависимостей от $C_V \in [0, C_V^*]$ верхней $\tilde{\lambda}_+$ (штрихпунктирные линии) и нижней $\tilde{\lambda}_-$ (штриховые линии) оценок отношения $\tilde{\lambda} = \lambda/\lambda_2$. Сплошными линиями представлены графики зависимостей $\tilde{\lambda}$, построенные по формуле (12). Результаты аналогичных расчетов при $C_V^* = 0.9$ ($\bar{R}_* \approx 1,036$) приведены на рис. 2. Отметим, что во всех случаях $\tilde{\lambda} = \tilde{\lambda}_+ = \tilde{\lambda}_- = 1$ при $\bar{\lambda} = 1$.

Из сопоставления графиков на этих рисунках следует, что при малом отличии значения $\bar{\lambda}$ от единицы формула (12) достаточно хорошо описывает зависимость эффективного коэффициента теплопроводности от объемной концентрации шаровых включений во всем проме-

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. "Естественные науки". 2012

жутке изменения C_V . По мере отклонения $\bar{\lambda}$ от единицы несмотря на сближение оценок при $C_V = C_V^*$ разность $\tilde{\lambda}_+ - \tilde{\lambda}_-$ для промежуточных значений C_V становится значительной. Причиной этого является, видимо, использование достаточно простых допустимых распределений температуры и плотности теплового потока при вычислении функционалов. Отметим, что с уменьшением относительной толщины $\bar{R}_* - 1$ промежуточного слоя разность $\tilde{\lambda}_+ - \tilde{\lambda}_-$ также уменьшается.

Работа выполнена по гранту НШ–255.2012.8 программы государственной поддержки ведущих научных школ.

СПИСОК ЛИТЕРАТУРЫ

- Кац Е. А. Фуллерены, углеродные нанотрубки и нанокластеры. Родословная форм и идей. – М.: Изд-во ЛКИ, 2008. – 296 с.
- 2. Поздняков В. А. Физическое материаловедение наноструктурных материалов. М.: МГИУ, 2007. 424 с.
- 3. Карслоу Г., Егер Д. Теплопроводность твердых тел: Пер. с англ. М.: Наука, 1964. 488 с.
- 4. З а й ц е в В. Ф., Полянин А. Д. Справочник по линейным обыкновенным дифференциальным уравнениям. М.: Факториал, 1997. 304 с.
- 5. З а р у б и н В. С. Инженерные методы решения задач теплопроводности. М.: Энергоатомиздат, 1983. 328 с.
- 6. Зарубин В. С., Кувыркин Г. Н. Математические модели механики и электродинамики сплошной среды. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. – 512 с.

Статья поступила в редакцию 27.07.2012