Категорная модель теории вероятностей для интеллектуальной обучающей системы

© Н.С. Васильев

МГТУ им. Н.Э.Баумана, Москва, 105005, Россия

В условиях системно-информационной культуры возрастает роль правильных общих представлений, без которых невозможна работа в наукоемких областях знаний. В полной мере это относится к подготовке инженерных кадров. Создание компьютерных интеллектуальных обучающих систем (ИОС) — это перспективное инновационное направление, связанное с проводимой в стране реформой образования. ИОС можно использовать как надстройку традиционного обучения студентов и как инструмент непрерывного образования специалистов. При работе в сети ИОС опирается на все межпредметное пространство документов ноосферы, использует всю мощь новых информационных технологий и инструментальных компьютерных систем Интернета.

Знания в ИОС представлены (упакованы) с помощью языка категорий, являющегося математическим языком систем (языком смыслов). Без этого средства невозможно охватить мир знаний ноосферы. Универсальные конструкции языка категорий составляют каркас рационального знания. Они специализированы в любых учебных курсах. С помощью языка категорий развиваются когнитивные способности, формируются системные представления обучающихся, необходимые для успешной экспансии специалистов в межпредметные области незнаемого. Это пригодится для инновационной инженерной деятельности.

Применяемый в ИОС категорный подход изложен на примере курса теории вероятностей, моделью которой служит категория случайных величин. С помощью этой модели удается прояснить системный смысл основных понятий и результатов теории. В работе доказаны существование образующего объекта, эквивалентность понятий мономорфности и изоморфности, характеристическое свойство дискретных случайных величин. Проведен категорный анализ понятия независимости случайных величин.

Ключевые слова: ноосфера, системно-информационная культура, интеллектуальная обучающая система, категория, морфизм, образующий, (полу)группа, коммутативная диаграмма, конус, вероятностная мера, случайная величина, распределение.

Введение. Системно-информационная культура приобщает каждого к межпредметной деятельности, которая осуществляется посредством инструментальных систем компьютера. При постоянном увеличении объема знаний и их усложнении развитие образования идет по пути универсальности: только системность представлений позволит обучающемуся преодолеть возросшую сложность знаний. Новые информационные технологии (НИТ), Интернет, суперкомпьютеры могут

обеспечить универсальное обучение [1], дополнив традиционную форму посредством интеллектуальной обучающей системы (ИОС) [2–5]. Для работы со знанием в ИОС должен быть учтен личностный характер знания, обеспечена его доступность благодаря адаптивности по отношению к обучающемуся, а также использованы наиболее общие языковые средства моделирования (упаковки), которые уже созданы в математике — метаматематика, общая алгебра и теория категорий [6–8]. Их освоение способствует когнитивной деятельности человека. Общий рациональный смысл, системность знания передают математические языковые средства теории категорий, в которой выделяются и проясняются универсальные конструкции.

Становление категорной алгебры приходится на середину XX века. Примерно в то же время Дж. фон Нейман открыл свойство универсальности равномерного вероятностного распределения. Удобный для математиков язык категорий ныне применяется во всех разделах математики, например в математической логике, топологии, теории дифференциальных уравнений, анализе. Поэтому инженерам также важно владеть этим средством описания и сравнения систем.

В настоящей работе анализируется категорная модель теории вероятностей, дающая общее представление об организации работы с рациональным знанием в ИОС. Инженерные приложения теории вероятностей [9] разнообразны: теория массового обслуживания [9], теория оценки надежности сложных систем [10, 11], вероятностное моделирование, адаптивное стохастическое управление потоками в пакетных сетях [12]. Обладающий системными знаниями инженер вполне сможет освоить работу с этими приложениями.

Модель теории вероятностей построена в форме категории слу-

Модель теории вероятностей построена в форме категории случайных величин. Категорный анализ выявил универсальность некоторых вероятностных распределений и понятий, прояснил смысл теоремы Колмогорова о согласованных распределениях.

Категория случайных величин Ω . Напомним, что категорией называется пара, состоящая из класса объектов A,B,C,... и класса морфизмов (стрелок) $f:A\to B,g:B\to C,...$, связывающих некоторые пары объектов, которые обладают следующими свойствами [6–8]. Для любой пары морфизмов вида $f:A\to B,g:B\to C,...$ определено произведение $g\cdot f$, являющееся морфизмом $g\cdot f:A\to C$. При этом произведение — ассоциативная операция, для каждого объекта A существует единица — морфизм 1_A , такой, что для всех морфизмов $f:A\to B,h:B\to A$ справедливы равенства $f\cdot 1_A=f,1_A\cdot h=h$. Например, класс множеств, рассматриваемых в качестве объектов, и класс отображений в качестве морфизмов образуют категорию множеств SET, если под произведением понимать суперпозицию функций.

Определим категорию случайных величин Ω . Изучение случайной величины $\xi = (\xi_1, \xi_2, ..., \xi_n)$ сводится к нахождению и исследованию свойств ее функции распределения F_{ξ} [9]. Введение функции распределения позволяет рассматривать векторное пространство R^n с заданной на нем вероятностной мерой dF_{ξ} в качестве выборочного пространства случайной величины ξ . Эта мера из алгебры «прямоугольных» множеств однозначно продолжается в σ -алгебре \mathfrak{B}^n всех борелевских множеств $B \subset R^n$ [9, 13–15].

Этим объясняется выбор вероятностных пространств $\Omega_{\xi}=\left(R^n,\mathfrak{B}^n,dF_{\xi}\right)$ в качестве объектов категории Ω . Разумеется, разные случайные величины могут соответствовать одному и тому же вероятностному пространству. Наличие ξ в обозначении Ω_{ξ} подчеркивает существование этого соответствия. Будем считать, что все случайные величины ξ принимают значения в конечномерных подпространствах R_{ξ} универсума $\mathbb{R}=R^{\mathcal{N}}, \mathcal{N}=\{1,2,\ldots\}$. Элементы \mathbb{R} , у которых лишь конечное число координат, отвечающих R_{ξ} , не равно нулю, служат значениями случайной величины ξ . Цилиндрические борелевские подмножества $B\times R_{\xi}^{'}, \mathbb{R}=R_{\xi}\times R_{\xi}^{'}$, образуют σ -алгебру, на которой задана вероятностная мера dF_{ξ} .

Рассмотрим класс измеримых по Борелю функций $f:R_\xi\to R_\eta$ [9]. Введем отношение эквивалентности $f_1\sim f_2$, означающее совпадение значений этих функций всюду на общей области определения, за исключением, быть может, подмножества нулевой меры dF_ξ . Класс эквивалентности [f] функции f по этому отношению назовем морфизмом $f:\Omega_\xi\to\Omega_\eta$. Квадратные скобки в обозначении морфизмов будем опускать.

Определим произведение морфизмов $f_1 \circ f_2$ как класс эквивалентности функции, являющейся суперпозицией произвольных представителей классов $[f_1],[f_2]$ соответственно. Единичными морфизмами служат тождественные преобразования выборочных пространств R_ξ . Корректность данных определений устанавливается непосредственно. Не вызывает затруднений и проверка того, что система указанных объектов и морфизмов образует категорию. Упрощая запись, считаем, что морфизмы определяются функциями $f:\mathbb{R} \to \mathbb{R}$. Всякий морфизм f преобразует одну случайную вели-

чину в другую и переносит вероятностную меру из области в кообласть морфизма.

В зависимости от вида функций распределения в категории случайных величин Ω можно выделять различные подкатегории, объекты которых отвечают абсолютно непрерывным Ω^p , сингулярным Ω^s и дискретным Ω^d вероятностным распределениям [9]. Объекты подкатегорий Ω^p или Ω^s задаются непрерывными распределениями. Дополнительный верхний индекс n, n = 1, 2, ..., будем использовать для обозначения подкатегории Ω^n случайных величин размерности, не большей n. Класс абсолютно непрерывных распределений (имеющих плотность вероятности) размерности n, n = 1, 2, ..., составляют объекты подкатегории $\Omega^{p,n}$.

В соответствии с теоремой Лебега в подкатегории Ω^1 всякая функция распределения F_ξ однозначно раскладывается на три составляющих $F_\xi = F^a + F^s + F^d$ — абсолютно непрерывную, сингулярную и дискретную [9]. В подкатегориях Ω^n , n>1, «дискретная» составляющая функции распределения может быть устроена гораздо сложнее — возможны поверхности разрыва различных размерностей, а не только нульмерные, подобно «обычным» дискретным случайным величинам.

В категории Ω существуют конечные объекты (единица Ω_1) [6–8] — дискретные одноточечные распределения. Случайная величина, соответствующая объекту Ω_1 , принимает единственное значение. Категория Ω не является полной, не содержит, например, нуля и произведений.

Заметим, что все морфизмы категории Ω являются эпиморфизмами, а действие морфизмов описывает известная эргодическая теорема Биркгофа [13–15].

Существование образующего объекта. В образующем объекте Ω_0 содержится все «богатство» категории. В случае его существования (это предстоит доказать) Ω_0 можно считать выборочным пространством любой случайной величины: $\phi:\Omega_0\to\Omega_\xi$. Ядро $\ker\phi$ задает отношение эквивалентности на пространстве Ω_0 , по которому определены фактор-пространство $\Omega_0/\ker\phi$ с фактор-алгеброй $\mathfrak{B}/\ker\phi$ [8].

С помощью естественного отображения $\tau:\Omega_0\to\Omega_0$ / ker ϕ перенесем вероятностную меру из пространства Ω_0 в фактор-пространство Ω_0 /ker ϕ .

Теорема 1 (об изоморфизме). Пусть $\varphi:\Omega_0\to\Omega_\xi$. Имеет место изоморфизм вероятностных пространств $\Omega_0/\ker\varphi\cong\Omega_\xi$.

Теорема 2. Категория Ω содержит образующий объект Ω_0 .

Доказательство. Пусть объект Ω_{u^n} соответствует случайной величине u^n , имеющей равномерное распределение на единичном кубе $I^n, I = [0,1]$. При n=1 будем опускать индекс n. Сначала докажем, что Ω_{u^n} — образующий объект в подкатегории Ω^n . Более того, для всех случайных величин ξ с непрерывной функцией распределения (абсолютно непрерывных или сингулярных) покажем, что имеет место изоморфизм $\Omega_{\varepsilon} \cong \Omega_{u^n}$ при некотором $n \ge 1$.

Доказательство становится особенно наглядным в одномерном случае: удается явно определить искомый морфизм $\phi: \Omega_u \to \Omega_\xi$. Впрочем, этот результат был ранее получен в работе [15].

$$g(u) = \max\{x : f(x) = u\}, u \in I \setminus \{1\}$$

— это коретракция $g:\Omega_u\to\Omega_\xi$, ведь F_ξ является распределением случайной величины $\xi=g(u)$:

$$F_{\xi}(x) = P(g(u) < x) = P(f \circ g(u) \le f(x)) = P(u \le f(x)) \equiv f(x).$$

Более того, $f\sim \tilde f$, где $\tilde f$ — сужение функции f на образ im(g) функции g . Следовательно, $g=\tilde f^{-1}$ и $\Omega_u\cong\Omega_\xi$.

Рассмотрим случай дискретной случайной величины ξ

$$P(\xi = c_k) = p_k, k = 1, 2, ...$$

Для построения искомого морфизма g следует разбить отрезок I на такие подмножества J_k , чтобы $P(u \in J_k) = p_k, k = 1, 2, ...,$ и определить g как $g(u) = c_k, u \in J_k$, для всех k. Ввиду эпиморфности, всякая Ω -стрелка обладает свойством $f_1 \circ g \neq f_2 \circ g$ для любых неравных стрелок $f_1, f_2 : \Omega_\xi \to \Omega_\eta$. Только это оставалось установить для того, чтобы сделать вывод: Ω_u — образующий в подкатегории Ω^1 .

Рассматривая общий случай, выделим объекты Ω_{ξ^c} подкатегории $\Omega^{p,n}, n > 1$, для которых величины ξ^c принимают значения в кубе I^n и имеют кусочно-постоянную плотность:

$$p(x) = c_j, x \in \Pi_j, j = 1, 2, ..., r.$$

Здесь параллелепипеды $\Pi_j, j=1,2,...,r$, образуют разбиение I^n . Методом математической индукции, проводимой по числу параллелепипедов разбиения, доказывается изоморфизм $\Omega_{u^n} \cong \Omega_{\epsilon^c}$.

Не ограничивает общности предположение о том, что произвольная случайная величина ξ принимает значения в кубе I^n . Аппроксимируем ξ слабо сходящейся последовательностью $\{\xi_s, s=1,2,...\}$ случайных величин ξ^c , имеющих кусочно-постоянную плотность вероятности p_{ξ_s} . Функцию $p_{\xi_{s+1}}$ будем строить по p_{ξ_s} , изменяя последнюю на кубах Π^s_j , $j=1,2,...,j_s$. Для этого разбиваем Π^s_j и на 2^n кубов и на получаемых частях Π^{s+1}_j задаем постоянные значения функции $p_{\xi_{s+1}}$, обеспечивающие более точное (в сравнении с p_{ξ_s}) приближение к распределению p_{ξ} .

Согласно доказанному, существуют изоморфизмы $\phi_s: \Omega_{\xi_{s-1}} \cong \Omega_{\xi_s} \left(\xi_0 = u^n \right)$. При этом их действие таково, что, отбросив часть кубов Π_j^s произвольно малого суммарного объема (при $s \to \infty$), для оставшихся множеств имеем $\phi_k \left(\Pi_j^s \right) \subset \Pi_j^s, \, k \geq s$.

Определим последовательность изоморфизмов:

$$\psi_s: \Omega_{u^n} \to \Omega_{\xi_s}, \psi_s = \varphi_s \circ \varphi_{s-1} \circ \ldots \circ \varphi_1, \ s = 1, 2, \ldots$$

Поскольку все множества Π_j^s сжимаются в точку при $s \to \infty$, то, согласно изложенному выше, почти всюду имеет место поточечная сходимость $\psi_s(x) \to \psi_\xi^*(x), s \to \infty$, последовательности функций $\{\psi_s\}$. Благодаря слабой сходимости $\xi_s \to \xi$, предельная функция ψ_ξ^* определяет морфизм $\psi_\xi^*: \Omega_{u^n} \to \Omega_\xi$. Ввиду произвольности ξ этим доказано, что Ω_{u^n} — образующий объект в подкатегории Ω^n .

Пусть теперь $\mathfrak{B}=\mathfrak{B}^{\mathcal{N}}$ есть σ -алгебра на $\mathbb{R}=\mathbb{R}^{\mathcal{N}}$, порожденная цилиндрическими множествами. Рассмотрим семейство согласованных вероятностных мер $\{dF_{u^n}, n \in \mathcal{N}\}$ на σ -алгебрах (R^n,\mathfrak{B}^n) . По теореме Колмогорова о согласованных распределениях [9] в пространстве $(\mathbb{R},\mathfrak{B})$ существует единственная вероятностная мера \mathfrak{P} , такая, что ее проекции $\pi_n:\mathbb{R}\to R^n$ совпадают с $dF_{u^n}, n=1,2,\ldots$ По построению все функции π_n являются морфизмами.

Остается убедиться в том, что объект $\Omega_0 = (\mathbb{R},\mathfrak{B},\mathfrak{P})$ — образующий в категории Ω . Пусть Ω_ξ — любой объект подкатегории Ω^n . Тогда найдется некоторый морфизм $\psi:\Omega_{u^n}\to\Omega_\xi$. Взяв композицию π_n и ψ , получим морфизм $\phi=\psi\circ\pi_n:\Omega_0\to\Omega_\xi$. Теорема доказана.

Проведенные рассуждения проясняют категорный смысл теоремы Колмогорова о согласованных распределениях.

Замечание 1. Выясним, когда морфизм ψ^* , построенный при доказательстве теоремы 2, является изоморфизмом. Пусть у распределения величины ξ имеется дискретная, для определенности нульмерная, составляющая $P(\xi=a)>0$. Тогда преобразование ψ^*_ξ стягивает прообраз точки $A=(\psi^*_\xi)^{-1}(a)$ в точку a. Отсюда получаем неинъективность отображения ψ^*_ξ и, как следствие, отсутствие обратной стрелки $(\psi^*_\xi)^{-1}$.

Пусть теперь распределение случайной величины ξ абсолютно непрерывно. Если плотность вероятности $p(x) \ge p_0 > 0, x \in \Pi_j^s$, то под действием морфизмов φ_k , k = s+1, s+2, ..., точка x не покинет множество Π_j^s . Образ этого множества при отображении ψ^* не сжимается в точку в отличие от случая дискретной случайной величины. Обратимость предельного морфизма ψ^* сохраняется (наследуется от семейства $\{\psi_s(x)\}$), т.е. ψ^* является изоморфизмом.

Рассмотрим сингулярный случай. Распределение величины ξ непрерывно. В кубе I^n имеется континуальное семейство поверхностей «уровня» функции $F=F_\xi$, на которых происходит ее рост:

$$\mathcal{L}_c = \{x: F\left(x\right) = c\;,\; \forall \Delta_1 > 0\; F\left(x-\Delta\right) < c\;,\; F\left(x+\Delta\right) \geq c\;,\; c \in I\}\;,$$
 где $\Delta = \left(\Delta_1,0,\ldots,0\right)$.

Вероятностная мера dF «сосредоточена» на множестве $\mathcal{L} = \bigcup_c \mathcal{L}_c$ нулевой меры Лебега:

$$P(\xi \in I^n \setminus \mathcal{L}) = 0.$$

По свойству функции распределения каждая поверхность \mathcal{L}_c пересекается с любой прямой, параллельной оси x_1 , не более чем в одной точке. Тогда проектирование π_c всякой поверхности уровня

 \mathcal{L}_c на часть гиперплоскости $x_1=c$ взаимно-однозначно и непрерывно. С помощью функции $\pi:\mathcal{L} \to I^n$ семейство поверхностей $\{\mathcal{L}_c\}$ «склеивается» в куб I^n , на который переносится исходная вероятностная мера. В результате приходим к абсолютно непрерывному распределению. В случае сингулярного распределения величины ξ также имеем $\Omega_{\varepsilon} \cong \Omega_{u^n}$.

О мономорфизмах категории Ω . Опишем строение автоморфизмов объекта Ω_u . Рассмотрим произвольное разбиение множества $I\setminus\{0\}$ на полуинтервалы $I_j=\left(a_j,b_j\right],\,j=1,2,\ldots$ Пусть сюръективная функция $f:I\to I$ является кусочно-линейной (линейной на полуинтервалах I_j), причем сумма модулей производных

$$\sum_{j \in J(y)} |f'(x_j)| = 1.$$

Здесь суммирование проводится по не более чем счетному множеству индексов

$$J(y) = \left\{ j : \exists x_j \in I_j / \left\{ b_j \right\}, f_j(x_j) = y \right\}.$$

Утверждение 1. Функции указанного вида и только они являются автоморфизмами объекта Ω_u . Изоморфизмы объекта Ω_u характеризуются тем, что у них всякое множество J(y) одноэлементное.

Утверждение 2. В подкатегории Ω^d дискретных распределений всякий мономорфизм является изоморфизмом. Объекты Ω^d попарно изоморфны тогда и только тогда, когда у них совпадают вероятностные ряды p_1, p_2, \ldots распределений. Автоморфизмы любого дискретного объекта образуют группу.

Теорема 3. В Ω всякий мономорфизм является изоморфизмом.

Доказательство. Для дискретных распределений теорема является следствием утверждения 2. Покажем, что всякий мономорфизм $\Omega_{u^n} \to \Omega_{u^n}$ является изоморфизмом. Тогда теорема Лебега и замечание 1 позволят сделать заключение о том, что это верно для всех морфизмов (см. далее замечание 2).

При n=1 доказательство проводится геометрическим методом на основе утверждения 1. Все автоморфизмы объекта Ω_{u^n} являются суперпозициями движений (когда сохраняются расстояния) частей куба I^n и растягивающих накрытий этих частей. Поскольку всякое растяжение можно свести к последовательности растяжений вдоль единственной координаты, то общий случай сводится к n=1.

Следствие 1. Все Ω -объекты являются атомарными и инъективными. Отметим, что в категории Ω не существует проективных объектов.

Из теоремы 3 получаем также следующее характеризационное свойство дискретных случайных величин.

Следствие 2. Полугруппа автоморфизмов объекта Ω_{ξ} является группой тогда и только тогда, когда ξ — дискретная величина.

Алгебраические и геометрические свойства объектов. Пусть $\xi = (\xi_1, \xi_2, ..., \xi_n)$ и $O^n_\delta(x)$ — n-мерный открытый шар радиусом $\delta > 0$ с центром в точке $x \in R^n$. Введем обозначение $p_\delta(x)$ для вероятности $P(\xi \in O^n_\delta(x))$.

Определение 1. Носителем вероятностной меры случайной величины ξ назовем множество $\sup \xi = \{x : \forall \delta \, p_\delta(x) > 0\}.$

Для любой точки $x \in \sup \xi$ возьмем произвольную окрестность $O_\delta^n(x)$, для которой $p_\delta(x) > 0$. Пусть F_η — условное распределение случайной величины $\xi, \xi \in O_\delta^n(x)$. (Мере dF_η отвечает некоторая случайная величина $\eta = \eta(\xi, \delta)$ и объект Ω_η .)

Определение 2. Геометрической размерностью случайной величины ξ в точке $x, x \in \sup \xi$, назовем такое число $\overline{q} = \overline{q}(x)$, для которого $(\exists \delta_0)(\forall \delta < \delta_0)$ dim $(\sup \xi \bigcirc O^n_\delta(x)) = \overline{q}$.

Под геометрической размерностью величины ξ будем понимать максимум из локальных размерностей (по всем точкам $x \in \sup \xi$):

$$q_{\xi} = \max \left\{ q : q \in Q(\xi) \right\}; Q(\xi) = \left\{ \overline{q}(x) : x \in \sup \xi \right\}.$$

Например, для n-мерной случайной величины ξ всегда $q_{\xi} \leq n$. Дискретная величина имеет нулевую геометрическую размерность.

В соответствии с теоремой Лебега нарушение свойства непрерывности функции распределения F_{ξ} происходит только тогда, когда $0 \in Q(\xi)$.

Изучение геометрической размерности носителя вероятностной меры позволяет классифицировать многомерные распределения. Множества $\sup_q \xi = \{x : \overline{q}(x) = q\}, q \in Q(\xi),$ образуют разбиение носителя вероятностной меры случайной величины ξ :

$$\sup \xi = \bigcup_{q \in Q(\xi)} \sup_{q} \xi.$$

Геометрические свойства величин не являются категорными (универсальными), но придают наглядность при изучении теории. Замечание 2. Нетривиальное разбиение носителя говорит о том,

Замечание 2. Нетривиальное разбиение носителя говорит о том, что вероятностное распределение случайной величины ξ является смесью простых распределений, для которых разбиение носителя меры тривиально, т. е. $Q(\xi) = \{q_{\xi}\}$. Это позволяет проводить доказательство, например, теоремы 3 лишь для случая простых распределений.

Пусть объект Ω_{η} отвечает условному распределению величины ξ , $\xi \in \sup_0 \xi$. Выделение нульмерной составляющей $\sup_0 \xi$ и значений вероятностей в точках $x \in \sup_0 \xi$ полностью характеризует полугруппу автоморфизмов $SG(\xi)$ объекта Ω_{ε} .

В самом деле, рассмотрим автоморфизмы подполугруппы SG_1 объекта Ω_u и группы $G_0(\eta)$, дискретного объекта Ω_η . Тогда справедлива следующая теорема.

Теорема 4. Имеет место изоморфизм $SG(\xi) \cong SG_1 \times G_0(\eta)$.

Спедствие 3. Объекты $\Omega_{\xi}, \Omega_{\xi'}$ изоморфны в том и только в том случае, когда изоморфны полугруппы их автоморфизмов и совпадают вероятности

$$P(\xi \in \sup_0 \xi) = P(\xi' \in \sup_0 \xi').$$

Объекты (случайные величины) с изоморфными полугруппами автоморфизмов естественно назвать подобными. Для подобных объектов пересчет вероятностей сводится к перенормировке этих величин.

Понятие независимости случайных величин. На интуитивном уровне в основе важного понятия независимости лежит различное «происхождение» случайных величин. В предложенной модели были изначально исключены исходные выборочные пространства случайных величин. Неполнота категории Ω , в которой отсутствуют произведения, препятствует тому, чтобы дать универсальное «стрелочное» определение этому понятию. Остается открытым вопрос, обладает ли понятие независимости случайных величин чертами универсальности хотя бы в каком-нибудь ослабленном виде.

Напомним некоторые определения. Под диаграммой $\mathfrak D$ в категории понимают любую конфигурацию стрелок (морфизмов). При этом особый интерес представляют коммутативные диаграммы [6–8]. Из любой диаграммы $\mathfrak D$ с помощью добавления каких-либо стрелок (морфизмов) можно построить новые диаграммы. Например, конус $K_{\mathfrak D}(U)$ получается с помощью расширения $\mathfrak D$ благодаря

добавлению всех морфизмов вида $f: U \to D$, где D — произвольный объект диаграммы $\mathfrak D$.

Для выражения понятия независимости случайных величин на категорном языке важен случай коммутативного квадрата-конуса $K_{\mathfrak{D}}(U)$, получаемого из диаграммы \mathfrak{D} вида $U_1 \overset{\varphi_1}{ o} U_0 \overset{\varphi_2}{\leftarrow} U_2$. В рассматриваемой категории соответствующий объект U всегда существует. Для построения $U = U^*$ достаточно применить к диаграмзабывающий функтор $\Phi: \Omega \to SET$ И рассмотреть $\Phi U_1 \times \Phi U_2$ — произведение в категории множеств SET. Затем на построенном множестве можно ввести вероятностную меру так, чтобы проекции объекта U на сомножители U_1, U_2 стали морфизмами. В случае непрерывных распределений на U_1, U_2 и конечности дискретной составляющей распределения на $U_{\scriptscriptstyle 0}$ на множестве $\Phi U_1 \times \Phi U_2$ удается ввести вероятностную меру с кусочнопостоянной плотностью.

Далее будем рассматривать случай U_0 , причем U_0 является конечным объектом: $U_0=1$. Ослабим стандартную конструкцию универсального конуса $[6,\ 7]$, исследовав свойство универсальности в классе коммутативных диаграмм $K_{\mathfrak{D}}(S)$ специального вида. Именно объекты S отвечают равномерным распределениям, заданным на декартовых произведениях некоторых множеств $S_i, i=1,2$. В качестве морфизмов $f:S \to D, D \in \mathfrak{D}$ в диаграмме $K_{\mathfrak{D}}(S)$ выбирают только те морфизмы, которые пропускаются $[6,\ 7]$ через проекции $\pi_i:S \to S_i$. Такие объекты S назовем расслоенными.

Определение 3. Пусть диаграмма $\mathfrak D$ имеет вид $U_1 \overset{\varphi_1}{\to} 1 \overset{\varphi_2}{\leftarrow} U_2$. Конус $K_{\mathfrak D}(U^*)$ назовем слабо универсальным, если для любого расслоенного объекта S найдется единственный морфизм $S \to U^*$, для которого диаграмма

$$\mathfrak{D}(S,U^*) = \{S \to U^*\} \bigcup K_{\mathfrak{D}}(S) \bigcup K_{\mathfrak{D}}(U^*)$$

коммутативна.

При этом объект U^* назовем слабо расслоенным произведением объектов $U_{\scriptscriptstyle 1}, U_{\scriptscriptstyle 2}$ или слабым пределом диаграммы $\mathfrak D$.

В следующей теореме прояснен категорный смысл понятия независимости.

Теорема 5. Вероятностное распределение слабого предела U^* диаграммы $\mathfrak D$ определено однозначно. Проекции $\xi_i:U^*\to U_i, i=1,2,$ являются *независимыми* случайными величинами.

Доказательство. В соответствии с замечанием 2 обоснование теоремы достаточно провести для простых диаграмм $\mathfrak{D}\big(U,U^*\big)$. Далее в рассуждениях всюду полагаем U=S. «Сборка» всех простых диаграмм полностью определяет исходную диаграмму, искомый объект U^* и единственный морфизм $U \to U^*$.

Не ограничивая общности, можно считать, что все объекты диаграммы $\mathfrak{D}\big(U,U^*\big)$ отвечают равномерным распределениям на «кубах» I^q . Здесь q — геометрическая размерность объекта. Можно также считать, что геометрические размерности объектов не убывают, если подниматься по диаграмме $K_{\mathfrak{D}}$ против стрелок, начиная с объекта $U_0=1$.

К диаграмме $\mathfrak{D}\big(U,U^*\big)$ применим забывающий функтор $\Phi:\Omega\to$ SET . Ввиду полноты категории множеств SET [6, 7] существует предел V^* диаграммы $\Phi\mathfrak{D}$, называемый обратным образом отображений $\Phi\phi_1,\Phi\phi_2$, и единственное отображение F вида

$$F = \langle \Phi f_1, \Phi f_2 \rangle : \Phi U \rightarrow V^*, f_i : U \rightarrow U_i, j = 1, 2,$$

для которого

$$\Phi f_1 = \pi_1 \circ F; \ \Phi f_2 = \pi_2 \circ F; \ \pi_j : \ V^* \to U_j, \ j = 1, 2.$$

По построению функция F является сюръективной. Покажем, что имеется единственный способ введения вероятностной меры на множестве V^* , превращающий F в искомый морфизм $F:U \to U^*, V^* = \Phi U^*$, причем диаграмма $\mathfrak{D} \big(U, U^* \big)$ коммутативна.

Анализ диаграммы $K_{\Phi\mathfrak{D}}(V^{\star})$ позволяет утверждать, что множество $V^{\star} \subset I^{q_1+q_2}$ можно, не ограничивая общности, представить в виде разбиения на кубы Π_i разных размерностей:

$$V^{\star} = \bigcup \prod_{i}, \ \Pi_{i} = (\Phi \varphi_{1})^{-1} (\Phi U_{0}^{i}) \times (\Phi \varphi_{2})^{-1} (\Phi U_{0}^{i}), \ \Phi U_{0} = \Phi U_{0}^{i}.$$

Здесь множества $U_{\scriptscriptstyle 0}^{\scriptscriptstyle i}$ также образуют разбиение $U_{\scriptscriptstyle 0} = \bigcup U_{\scriptscriptstyle 0}^{\scriptscriptstyle i}$.

Коммутативность диаграмм $K_{\mathfrak{D}}(U^{\star}), K_{\mathfrak{D}}(U)$ доказывает, что вероятностные меры обратных образов морфизмов

$$\Pi_i, U^i, U^i_j, j = 0, 1, 2, \quad U^i = (\varphi_1 \circ f_1)^{-1} (U^i_0) \subset U; \ U^i_j = (\varphi_j)^{-1} (U^i_0) \subset U_j,$$

должны быть равны одной и той же величине p_i . Здесь наборы этих множеств пронумерованы индексом i.

Таким образом, требуется выяснить, можно ли «согласовать» вероятностные меры на борелевских σ -алгебрах этих множеств. Достаточно дать ответ, проведя соответствующие построения для каждого i-го набора множеств в отдельности. Поэтому далее будем считать, что все объекты из диаграммы $\mathfrak{D}\big(U,U^*\big),V^*=\Phi U^*$ отвечают равномерным распределениям на кубических множествах

$$U = I^q$$
; $V^* = I^{q_1 + q_2}$; $U_i = I^{q_i} (q \ge q_1 + q_2)$.

Для объекта U^* это служит определением. Осталось доказать, что отображение $F = \langle f_1, f_2 \rangle$: $I^q \to I^{q_1+q_2}$ является морфизмом $F: U \to U^*$. При этом из диаграмм известно, что f_j — морфизмы $f_j: \Omega_{u^q} \to \Omega_{u^{q_j}}, j=1,2$. Рассмотрим произвольные параллелепипеды $Q_j, Q_j \subset I^{q_j}, j=1,2$, равного объема V, совпадающего с объемами полных прообразов $f_j^{-1}(Q_j)$. Как известно, в случае равномерных распределений вероятностная мера множества совпадает с его объемом. Сравним величину V с объемом полного прообраза $F^{-1}(Q_1 \times Q_2)$, который по виду F совпадает с пересечением $f_1^{-1}(Q_1) \cap f_2^{-1}(Q_2) \subset I^q$. Указанные числа должны быть равными. Иначе отображение F не было бы определено на всем множестве I^q . Следовательно, F — морфизм, что и требовалось доказать.

На основании теоремы 5 с помощью понятия слабого предела можно дать следующее «внутреннее» определение понятию независимости случайных величин.

Определение 4. Случайные величины ξ_1, ξ_2 назовем независимыми, если объект $\Omega_{(\xi_1,\xi_2)}$ является слабо расслоенным произведением объектом $\Omega_{\xi_1}, \Omega_{\xi_2}$ над единицей Ω_1 .

Отметим, что подкатегории Ω^n и Ω^1 эквивалентны и $\Omega_u \cong \Omega_{u^n}$, $n \geq 1$; $\Omega_u \cong \Omega_0$.

Применение категорной модели в ИОС. Работа в ИОС помогает обучающемуся в продвижении по смыслам изучаемых понятий.

Главная цель системы — обеспечить понимание изучаемого учебного материала.

На нижнем уровне ИОС осуществляется формирование учебного курса на базе изучаемого «горящего» курса, в данном случае это, например, учебник [9]. Такой материал «пропускается» через категорный язык, посредством которого налаживаются связи с другими учебными материалами из базы знаний Интернета. Это делается благодаря наличию общих универсальных конструкций и общих понятий. Личностная база знаний строится из документов, находящихся в сети, и в процессе работы дополнительно снабжаемых качествами, облегчающими навигацию по этим документам [3-5]. В результате строится индивидуальный учебный курс: к исходному курсу добавляются профессиональные курсы, задачники, обзорные материалы и работы по истории развития научного знания, в которых учитывается процесс развития понятий при филогенезе [1–5]. В диалоге с системой обучающийся приобретает возможность участвовать в выборе собственного пути освоения учебного материала под руководством системы [2, 5].

Учебные материалы в ИОС приобретают связность целого для достижения эффективности работы поисковой системы ИОС. Это достигается путем создания иерархического индексного указателя, графа понятий, смысловых единиц текста внутри каждого документа и между всеми документами посредством введения их оглавлений и индексов [2]. Процесс формирования базы знаний автоматизирован в ИОС с помощью инструментальных систем НИТ. Редактирование, навигация по документам осуществляются в диалоговом режиме. Обучающийся занимается в ИОС исследованием системы понятий и важнейших свойств объектов изучаемых предметных областей в их связности с другими областями.

Верхний уровень ИОС привносит смыслы в работу обучающегося, способствуя его развитию путем сравнения изучаемого материала с другими теориями. При работе с горящим курсом теории вероятностей будут задействованы теория меры, математический и функциональный анализ, алгебра, дискретная математика.

Модель ИОС снабжена целеполаганием. В процессе работы ИОС

формируются локальные цели обучения, составляющие тактику метода обучения, подчиненные достижению главной цели — стратегии: обеспечить усвоение больших объемов знаний за счет целостно-

сти восприятия (понимание) учебного материала;

обеспечить преодоление сложности за счет адаптивного поиска, разного по уровню сложности знания.

Согласно стратегии обучения, обучающийся будет ознакомлен с главными результатами изучаемой теории. На категорном языке

можно дать краткое точное описание общих результатов теории так, как это было сделано в настоящей работе ранее.

Всякий учебный курс будет «пропускаться» в ИОС через категорное описание. В диалоговом режиме, исходя из запросов пользователя, ИОС предложит ознакомиться с подграфом понятий изучаемой предметной области и поддержит навигацию к соответствующему материалу из базы знаний. Для обеспечения адаптивной доступности учебного материала ИОС использует динамическую модель обучающегося и протокол работы в системе. По мере необходимости будут привлекаться вспомогательные учебные курсы [1–5].

При изучении теории вероятностей главная цель обучения состоит в исследовании категории Ω . Поисковая система ИОС будет подбирать подходящий учебный материал так, чтобы для обучающегося стали «очевидными» общие свойства объектов и морфизмов.

Поисковая система ИОС способствует развитию обучающегося. Приобщение к знаниям происходит через понимание изучаемого материала. В соответствии со стратегией системы для оказания помощи обучающемуся ИОС задействует понятия, примеры-проблемы, теоремы из различных разделов математики. Для проведения доказательств потребуется всесторонняя поддержка — привлечение знаний из профессиональных курсов по математической логике, общей алгебре, теории категорий, анализу, топологии, теории меры, линейной алгебре.

Таким образом, учебный курс формируется персонально для каждого обучающегося в процессе его работы в ИОС. На базе тех же принципов система может заниматься обучением любой погружаемой в нее предметной области. Принципы построения ИОС и полное обоснование этого подхода изложены в работах [1–5].

Автор выражает благодарность своему коллеге по работе над ИОС В.И. Громыко за ценные советы и обсуждение настоящей статьи. Автор признателен Р.С. Исмагилову, прочитавшему рукопись статьи и указавшему на работу [15], в которой получены общие результаты о гомоморфизмах в пространствах Лебега. В [15] отмечено также свойство универсальности объекта $\Omega_{\rm u}$.

ЛИТЕРАТУРА

- [1] Громыко В.И., Васильев Н.С. Новые информационные технологии и обучение в системно-информационной культуре. Сб. тр. XII Всеросс. школыколлоквиума по стохастическим методам и VI симп. по прикладной и промышленной математике (осенняя открытая сессия), 2007, с. 171–172.
- [2] Громыко В.И., Аносов С.С., Ельцин А.В., Леонов М.И. Обучение в системноинформационной культуре — на пути реализации. *Тематический сб. Про*граммные системы и инструменты, вып. 11. Москва, МГУ ВМК, 2010, с. 5–20.

- [3] Громыко В.И., Васильев Н.С., Казарян В.П., Симакин А.Г. Задачи и возможности образования в системно-информационной культуре. *Тр. 12-й Междунар. конф. «Цивилизация знаний: проблемы человека в науке XXI века».* Москва, РосНОУ, 2011, с. 143–159.
- [4] Громыко В.И., Васильев Н.С., Казарян В.П., Симакин А.Г., Аносов С.С. Смыслы образования системно-информационной культуры. *Тр. 14-й Междунар. конф. «Цивилизация знаний: проблемы и смыслы образования»*. Москва, РосНОУ, 2013, с. 134–154.
- [5] Громыко В.И., Васильев Н.С., Казарян В.П., Симакин А.Г., Аносов С.С. Рациональное образование как технология сознания. *Междисц. журн. Сложные системы*, 2013, № 3(8), с. 87–107.
- [6] Голдблатт Р. Топосы. Категорный анализ логики. Москва, Мир, 1983.
- [7] Маклейн С. Категории для работающего математика. Москва, Мир, 1982.
- [8] Скорняков Л.А. Элементы общей алгебры. Москва, Наука, 1983.
- [9] Боровков А.А. Курс теории вероятностей. Москва, Наука, 1972.
- [10] Левин П.А. Павлов И.В. Оценка показателей ресурса технических систем в переменном режиме функционирования. *Вестник МГТУ им. Н.Э. Баумана*, *Сер. Естественные науки*, 2009, № 2, с. 28–37.
- [11] Левин П.А., Павлов И.В. Оценка надежности системы с нагруженным резервированием по результатам испытаний ее элементов. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2011, № 3, с. 59–70.
- [12] Коновалов М.Г. Оптимизация работы вычислительного комплекса с помощью имитационной модели и адаптивных алгоритмов. *Информатика и ее применения*, 2012, т. 6, вып. 1, с. 37–48.
- [13] Окстоби Дж. Мера и категория. Москва, Мир, 1974.
- [14] Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. Москва, Наука, 1977.
- [15] Рохлин В.А. Об основных понятиях теории меры. *Математический сборник*, 1949, т. 25 (67), № 1, с. 107–150.

Статья поступила в редакцию 05.07.2013

Ссылку на эту статью просим оформлять следующим образом:

Васильев Н.С. Категорная модель теории вероятностей для интеллектуальной обучающей системы. *Инженерный журнал: наука и инновации*, 2013, вып. 12.

URL: http://engjournal.ru/catalog/appmath/hidden/1159.html

Васильев Николай Семенович окончил МГУ им. М.В. Ломоносова в 1974 г. Д-р физ.-мат. наук, профессор кафедры «Высшая математика» МГТУ им. Н.Э. Баумана. Автор более 80 научных статей по оптимальному управлению, вычислительной математике, теории оптимизации, исследованию операций, информатике. Занимался параллельными вычислениями и математическим моделированием пакетных сетей передачи данных. В настоящее время областью научных интересов является проблема создания интеллектуальных обучающих систем. e-mail: nik8519@yandex.ru