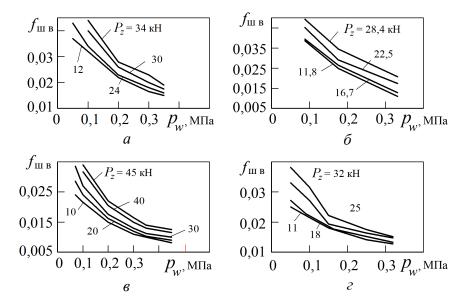
Зависимости сопротивления качению пневматических шин

© В.В. Ларин

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия

Представлен анализ широко используемых зависимостей сопротивления качению пневматических шин от вертикальной нагрузки и давления воздуха в шине, отмечены их достоинства и недостатки. Предложены пути повышения точности рассматриваемых зависимостей.

Ключевые слова: транспортное средство, опорная поверхность, эластичный колесный движитель, пневматическая шина, вертикальная деформация, вертикальная нагрузка, давление воздуха, сопротивление качению.


Для расчета подвижности колесных транспортных средств (КТС) помимо вертикальной деформации h_z колесного движителя (КД) под действием нормальной нагрузки P_z необходимо знать его коэффициент сопротивления качению $f_{\rm III}$. Кроме того, с учетом упругого и непосредственного скольжения КД сопротивление качению оценивают коэффициентом мощности сопротивления качению [1]

$$f_{N_f} = N_{\rm c}/P_z v_{\rm KX},$$

где $N_{\rm c}$ — мощность сопротивления качению; P_z — вертикальная нагрузка; $v_{\rm \kappa x}$ — продольная составляющая скорости оси КД.

Исходным параметром при расчете f_{N_f} является коэффициент сопротивления качению в ведомом режиме $f_{\text{ш в}}$ (при отсутствии крутящего момента $M_{\text{к}}$ на оси) на ровной опорной поверхности (ОП) с учетом температуры шины, оказывающей значительное влияние на его значение. После определения $f_{\text{ш в}}$ по различным методикам учитывают шероховатость ОП, скорость $v_{\text{кx}}$, подведенный момент $M_{\text{к}}$, продольную скорость скольжения для расчета f_{N_f} .

Для вычисления $f_{\text{ш в}}$ наиболее надежным до сих пор является экспериментальный метод. Однако в любом случае $f_{\text{ш в}}$ определяют в зависимости, как минимум, от вертикальной нагрузки P_z и давления воздуха в шине p_w . На рис. 1 представлены зависимости $f_{\text{ш в}}(P_z, p_w)$.

Рис. 1. Экспериментальные зависимости коэффициента сопротивления качению в ведомом режиме для шин $1200 \times 500 - 508$ мод. И-247 (*a*), 14.00 - 20 мод. ОИ-25 (*б*), $1300 \times 530 - 533$ мод. ВИ-3 (*в*) и 16.00 - 20 мод. И-159 (*г*) от вертикальной нагрузки и давления воздуха

Приведенные данные можно использовать при оценке подвижности КТС, однако пользоваться ими не всегда удобно. Поэтому многие исследователи КТС стремятся получить эмпирические зависимости $f_{\text{ш в}}(P_z, p_w)$, позволяющие с приемлемой точностью учитывать изменения нагрузки P_z и давления p_w в широком диапазоне эксплуатационных режимов КТС.

Остановимся на наиболее распространенных соотношениях.

Формула Я.С. Агейкина предлагает рассчитывать коэффициент $f_{\mathrm{m}\,\mathrm{B}}$ по формуле [2]

$$f_{\text{III B}} = \frac{P_{f_{\text{III}}1} + P_{f_{\text{III}2}}}{P_z} \,. \tag{1}$$

Здесь $P_{f_{\rm ml}}$, $P_{f_{\rm m2}}$ — силы сопротивления качению, обусловленные соответственно деформацией оболочки шины и циклическим сжатием резины протектора:

$$\begin{split} P_{f_{\text{III}}} &= 0, 5 \cdot 10^6 \, \psi_1 p_{\text{III}0} c_{\text{III}}' h_z^2 \Bigg(0, 5 - \frac{h_z}{3 b_{\text{б.д.}}} \Bigg); \ c_{\text{III}}' &= \frac{B_{\text{III}}}{H_{\text{III}}} + \frac{1, 5 H_{\text{III}}}{B_{\text{III}}} ; \\ P_{f_{\text{III}2}} &= 0, 5 \cdot 10^6 \, \psi_2 b_{\text{б.д}} h_{\text{прот}} \frac{\left(p_w + p_{\text{III}0} \right)^2}{E_{\text{ne3}} k_{\text{FD3}}}; \end{split}$$

 ψ_1 и ψ_2 — коэффициенты гистерезисных потерь соответственно в оболочке шины и резине протектора; $p_{\text{ш}0}$ — давление шины на ОП при $p_w=0$, МПа; h_z — вертикальное перемещение оси колеса, м; $b_{\text{б.д}}$ — ширина беговой дорожки шины, м; $B_{\text{ш}}, H_{\text{ш}}$ — соответственно ширина и высота профиля шины, м; $h_{\text{прот}}$ — толщина протектора, м; p_w — давление воздуха в шине, МПа; $E_{\text{рез}}$ — модуль деформации резины, МПа; $k_{\text{грз}}$ — коэффициент насыщенности протектора.

Нормальную нагрузку и среднее давление в контакте колеса с ОП рассчитывают при этом соответственно по формулам

$$P_z = \overline{p}_z F_{\text{III}} \cdot 10^6; \ \overline{p}_z = 0.5 c'_{\text{III}} \left(p_w + p_{\text{III}0} \right) \frac{\pi h_z}{b_{6,\text{I}}} \left(1 - \frac{h_z}{b_{6,\text{I}}} \right),$$

где P_z — в H; \bar{p}_z — в МПа; $F_{\rm m}$ — площадь контакта, м².

Следовательно, вычислить $f_{\text{ш в}}$ можно только при задании перемещения h_z , что усложняет определение искомого параметра. Однако необходимо отметить, что формулы были получены для оценки подвижности КТС на деформируемых ОП, в методиках расчета которых в связи с деформируемостью шины и ОП приходится в качестве аргумента использовать их деформации h_z и h_{Γ} .

В НАМИ предложено следующее выражение [3]:

$$f_{\text{III B}} = \frac{\alpha_{f_{\text{III}}} + \beta_{f_{\text{III}}} (0.1P_z)^2}{1 + 10 p_w},$$
 (2)

где $\alpha_{f_{\text{III}}}$, $\beta_{f_{\text{III}}}$ — коэффициенты, постоянные для данной шины и зависящие от ее конструктивных параметров, МПа, МПа/H²:

$$\alpha_{f_{\rm III}} = 0,082 - 7,8 \cdot 10^{-7} n_{\rm c,\pi} \left(10 B_{\rm III}\right)^{1.5} r_{\rm cB}^2 / H_{\rm III},$$

$$\beta_{f_{\rm III}} = H_{\rm III} n_{\rm c,\pi} \left(10 B_{\rm III}\right)^{1.5} r_{\rm cB}^2 - 9,75 \cdot 10^{-10},$$

где $n_{\rm cn}$ — число слоев корда в оболочке шины; $r_{\rm cs}$ — свободный радиус колеса.

При малой скорости движения ($v_{\rm kx} \approx 0$) можно использовать формулу Антонова [4]

$$f_{\text{III B 0}} = \left(1 - \frac{k_{\text{II3H}}}{3}\right) \frac{k_{\text{карк}}}{40} \left[1 + 0.1(n_{\text{CЛ}} + 5)\left(1 - \frac{p_w}{p'_{\text{III}0} + p_{w \text{ HOM}}}\right)^2\right] \times \sqrt{\frac{H_{\text{III}}(r_{\text{CB}} - H_{\text{III}})}{B_{\text{III}}r_{\text{CB}}}\left(\frac{n_{\text{CЛ}} + 30}{100}\right)\left(\frac{P_z + P_{z \text{ HOM}}}{P_{z \text{ HOM}}}\right)},$$
(3)

где $k_{\rm изн}$ — степень износа высоты грунтозацепа, $k_{\rm изн}=1-h_{\rm грз}\,_i/h_{\rm грз0}$; $k_{\rm карк}$ — коэффициент каркаса, равный 1 для диагональных и $0.95...0.002\,v_{\rm kx}$ — для радиальных шин; $P_{z\rm\ hom}$, $p_{w\rm\ hom}$ — номинальные вертикальная нагрузка и давление воздуха в шине соответственно.

При этом увеличение потерь с ростом скорости движения можно оценивать с помощью выражения

$$f''_{\text{III B}} = f_{\text{III B0}} \left[1 + \left(\frac{k_{\text{карк}} v_{\text{кx}}}{30} \right)^3 \sqrt{\frac{p'_{\text{III}0}}{p_w + p'_{\text{III}0}}} \right].$$

Достоинством выражений (2) и (3) является отсутствие деформации h_z шины, значительно упрощающее расчеты при движении по твердым (недеформируемым) ОП.

Определим неизвестные параметры в представленных формулах методом наименьшей суммы квадратов разностей расчетных и экспериментальных значений $f_{\text{ш в 9}} = f\left(p_w, P_z\right)$, причем отдельно при постоянных значениях p_w и P_z . Значения величин в формулах, полученные при различных давлениях p_w в некотором диапазоне P_z и, наоборот, при постоянном давлении p_w отличаются, что указывает на возможные ошибки при использовании данных зависимостей. В таблице для различных шин представлены средние значения параметров, входящих в формулы (1)–(3).

Таблица Значения параметров в формулах для расчета коэффициента сопротивления качению шин

Параметры	1200×500–508 мод. И-247	14.00–20 мод. ОИ–25	16.00–20 мод. И–159	1300×530–533 мод. ВИ-3
$P_{z \text{ ном}}$, кН	33,0	27,9	25,0	45,0
$p_{w \text{ ном}}$, МПа	0,35	0,37	0,32	0,35
<i>p</i> _{ш0} , МПа	0,1242	0,1480	0,0695	0,1770
<i>p</i> ′ _{ш0} , МПа	0,1392	0,2000	0,2617	-0,0680
ψ_1	2,3913	3,0000	2,9908	1,7451
Ψ2	1,1361	1,0000	3,3676	0,2825
$\alpha_{f_{ m III}}$	0,0630	0,0176	0,0539	0,0545
$eta_{f_{ m III}}$	0,0017	0,0100	0,0025	0,0001
ψ_1'	0,1302	0,1068	0,1051	0,1159
Ψ' ₂	$7,10\cdot10^{-5}$	$16,0\cdot10^{-5}$	$6,37 \cdot 10^{-5}$	6,30·10 ⁻⁵
k_z' , м·МПа/Н $^{3/4}$	7,66·10 ⁻⁴	$7,50\cdot10^{-4}$	8,39·10 ⁻⁴	6,74·10 ⁻⁴

На рис. 2 представлены относительные погрешности определения коэффициента сопротивления качению $\tilde{f}_{\text{III B}} = \frac{f_{\text{III B}} \ _{\text{ЭКС}} - f_{\text{III B}} \ _{\text{Расс}}}{f_{\text{III B}} \ _{\text{ЭКС}}}$ для одной из шин при изменении P_z и p_w . В качестве базовых при расчете приняты средние значения параметров, полученные при фиксированных значениях P_z и p_w (см. таблицу).

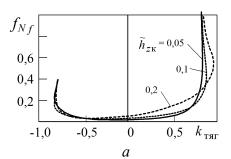
Рис. 2. Относительные погрешности определения коэффициента сопротивления качению в ведомом режиме для шины 16.00–20 мод. И-159 при $P_z=11,5$ (a), 25 (б), 32 кН (в) и $p_w=0,05$ (г), 0,15 (д), 0,32 МПа (е): I-4 — расчет по формулам (1)–(4) соответственно

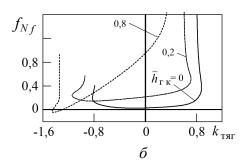
Анализ этих зависимостей показывает значительное расхождение экспериментальных и расчетных значений $f_{\text{ш в}}$ в некоторых диапазонах P_z и p_w . Наибольшие погрешности наблюдаются при использовании формул (1) и (3).

Для повышения точности расчета предложены следующие выражения:

$$f_{\text{III B}} = \frac{P'_{f_{\text{III}1}} + P'_{f_{\text{III}2}}}{P_{z}}; \tag{4}$$

$$P'_{f_{\text{III}}} = 0.5 \cdot 10^6 \psi'_1 h_z^2$$
; $P'_{f_{\text{III}2}} = 0.5 \cdot 10^6 \psi'_2 b_{6,\text{д}} h_{\text{прот}} E_{\text{pe}_3} \frac{P_z}{P_{z_{\text{HOM}}} k_{\text{гр}_3}}$.


Вертикальная деформация при этом


$$h_z = \frac{k_z' \left(0.1 P_z \right)^{3/4}}{1 + 10 p_w} \sqrt{\frac{p_{w \text{ HOM}} + p_w}{4 p_{w \text{ HOM}}}} ,$$

где k_z' — коэффициент, постоянный для данной шины, м·МПа/Н $^{3/4}$.

Как видно на рис. 2, относительные погрешности при расчете по формуле (4) достаточно стабильны и незначительны (не более $10\,\%$) во всех диапазонах изменения p_w и P_z .

Имея приемлемые выражения для определения $f_{\text{ш в}}$ и h_z , можно переходить к более сложным моделям, описывающим взаимодействие КД с ОП. Представленные на рис. 3 расчетные зависимости коэффициента мощности сопротивления качению f_{Nf} от коэффициента тяги $k_{\text{тяг}} = P_x/P_z$ учитывают распределение нормальных и касательных напряжений по длине контакта шины с ОП. Для твердой ОП кривые построены при различной относительной деформации колеса $\tilde{h}_{z \ \text{к}} = h_z/r_{\text{св}}$ (см. рис. 3, a) [5], а для деформируемой ОП — от относительной деформации грунта $\tilde{h}_{\text{г к}} = h_{\text{г}}/r_{\text{св}}$ (см. рис. 3, δ) [1].

Рис. 3. Зависимости коэффициента мощности сопротивления качению КД с шиной 1600×600 -685 при $P_z = 75$ кН от коэффициента тяги и относительной деформации колеса на твердой ОП (a) и на деформируемой ОП грунта (δ)

Таким образом, предлагаемые зависимости позволяют повысить точность расчета $f_{\text{III B}}$ КД при изменяемых значениях эксплуатационных параметров P_z и p_w , а тем самым параметров подвижности и загруженности систем КТС.

ЛИТЕРАТУРА

- [1] Ларин В.В. *Теория движения полноприводных колесных машин*. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2010, 391 с.
- [2] Агейкин Я.С. *Проходимость автомобилей*. Москва, Машиностроение, 1981, 232 с.

- [3] Петрушов В.А., Московкин В.В., Евграфов А.Н. Мощностной баланс автомобиля. Москва, Машиностроение, 1984, 160 с.
- [4] Беспалов С.И., Антонов Д.А., Лазаренко В.П., Маковеев В.С., Тимофеев В.Д., Шишкин В.А. *Теория движения боевых колесных машин*. Москва, Изд-во Министерства обороны, 1993, 385 с.
- [5] Ларин В.В. Оценка параметров прямолинейного качения колесного движителя по твердой опорной поверхности. *Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение*, 2012, № 2, с. 59–69.

Статья поступила в редакцию 11.10.2013

Ссылку на эту статью просим оформлять следующим образом:

Ларин В.В. Зависимости сопротивления качению пневматических шин. *Инженерный журнал: наука и инновации*, 2013, вып. 12. URL: http://engjournal.ru/catalog/machin/transport/1034.html

Ларин Василий Васильевич — д-р техн. наук, профессор кафедры «Колесные машины» МГТУ им. Н.Э. Баумана. Автор более 40 научных работ в области проходимости колесных машин. e-mail: larin.lvv20946@yandex.ru